The Object-
Oriented

~— Tutorial Series:
Part I

By Craig S. Mullins

n the February issue of Data Management
Review, we explored the perimeters of the
object-oriented (00) world. The information in
that article provided a road map to basic object-ori-
ented concepts for the data base professional. But
there is much more to learn. Let's peer deeper into
our object-oriented crystal ball to see if we can add

some depth to our OO knowledge.

Where Is That Information Hiding?

Well, I understand the basics. Let’s see, objects encapsulate
data and methods and are defined by means of a class hierarchy,
whereby the data and methods of parent classes are inherited
by subordinate classes. Now, what else can you tell me?

Quite a bit, actually, Consider encapsulation. Simply stating
encapsulation to be the combination of data and method under
one common object is not sufficient. Encapsulation also infers
that the data in an object can only be accessed and modified by
the methods included therein. This is a key concept. No
method can read or update the data in another object. The only
means of affecting the data in another object is for a method in
one object to pass a message to another object, invoking a
method encapsulared in that object.

T'his concepr is called information hiding, When implement-

ed properly, information hiding can increase reusability and
decrease software maintenance costs. For any given object, the
methods can be completely re-written and the data manipulat-
ed without impacting any other part of the system if the object
still responded the same way to the same messages.

Burt, to develop true object-oriented systems, one must
change herfhis entire way of thinking about software develop-
ment. Reusability does not just appear because you start using
0O techniques. It is incumbent upon the developer to com-
pletely plan every phase of the implementation to increase the
chance of reusability. Of course, object orientation increases the
likelihood that well-planned system development will be
reusable. Bur it simply does not guarantee it. This issue is key
to the acceprance of any new technology. There are no
panaceas. We must still work hard to produce accurate and
usable specifications. Further, we must use standard method-
ologies to develop the software from the specifications. Failure
to do so breeds chaos—and no technology, not even 00, will
rescue us from that fate.

More on this later. Let's resume our discussion of OO termi-
nology.

Object orientation also implies polymorphism.
Polymorphism can be thought of as almost synonymous to com-
monality. Let’s learn by example. Consider the automobile that
vou drive each day. What is the driver’s interface to that auto-
mobile? The gas pedal is long and thin and on the right. The
brake pedal is wide and to the left. A steering wheel controls
the movement of the car from left to right, and right to left. All
of this can be said without knowing anything about your car.
This information is generally true regardless of the make,

28 DATA MANAGEMENT REVIEW/ MAY 1993



model or year of your car. An automobile,
therefore, has a polymorphic interface.
The engine within each car that responds
to commands from the interface differs
by make, model and year, but the actual
interface is standard.

But, you may be thinking, American
cars have the steering wheel on the right
and Japanese cars have the wheel on the
left. Doesn’t this connote a lack of poly-
morphism? Not really. When I turn the
wheel, it moves the same way regardless
of its location within the car. Its location
is basically irrelevant.

A lack of polymorphism can be better
demonstrated by the switch that controls
the high beams of the car’s headlights.
On some models, this switch is on the
floor. It is activated by pressing it with
your foot. On other models, the switch is
on a lever extending from the steering
wheel. This switch is activated by tap-
ping it forward. The different interfaces,
each working in a different manner to
accomplish the same task, show a lack of
polymorphism.

So, objects hide information behind
polymorphic interfaces. But how are
objects identified? Although the concept
is simple, it must be stated. Every object
within an OO system or data base must
be uniquely identifiable. This should be
accomplished by means of an object iden-
tifier (OID). It is not at all clear within
the OO world as to whether the OID
should be system-generated or not. It is
also unclear as to whether a primary key
can serve the purpose of an OID. Suffice
it to say that the objects within an ODB
must be uniquely identifiable within the
system. The actual make-up and con-
struction of the OID is left to each indi-
vidual object-oriented data base manage-
ment system (OODBMS)
implementation.

However, as an aside, the availability
of a system-generated unique identifier
can be of great assistance. Think back to
the last time you implemented a data
base and one of the tables (or segments)
had no easily identifiable primary key.
Did you go without one? Did you gener-
ate a fake one programmatically? If it was
DB2, did you use a timestamp and cause
users to deal with its difficult 26-byte
character representation? Wouldn’t it
have been nice for the DBMS to handle
it for you? Many CODBMS implementa-
tions will automatically generate OIDs.

Stick Around Awhile

I like it. Information hiding reduces
the amount of work that the application
developer must do. Polymorphism
decreases the learning curve for both
users and developers by invoking similar
actions the same way. And, every distinct
object must be distinctly accessible. It
makes perfect sense. But, can you help
me with another OO term that I’ve heard
in the trade publications? Just what is
“persistence?”

When you are persistent with someone
or about something, you simply don’t
give up and won’t go away. Object persis-
tence is basically the same thing

But let’s back up and learn by exam-
ple. Consider the variables within a clas-
sic program, such as one written in
COBOL. As the program executes, the
variables take on values. When the pro-
gram stops, the variables go away. They
are not persistent. To keep the values in
between program runs, they must be
stored somewhere such as in a flat file, a
data base, a report, etc.

If you understand this concept, you
understand persistence. For ODBs,
objects are persistent. They are stored.
For OO programs, the entire state of the

Figure 1: Multiple Inheritance

Diplomat Liar Thief S:lp“‘i‘"
osses

Politician Sulgrdinate
osses

program can be persistent. In other
words, when an OO program terminates,
the state of all of its variables can be
saved until the next program execution.
So, persistence is just another way of say-
ing that the state of the data is stored
somewhere.

Another term that you may have heard
in conjuncrion with object crientation is
overloading. This is another simple con-
cept that makes a lot of sense in practice.
Simply stated, overloading is the assign-
ment of different meanings to the same
method name. The actual process that is
performed by the method differs by
object. For example, consider the pro-
gramming language, BASIC. Most imple-
mentations of BASIC overload the “+”
operator. When two numbers are operat-
ed upon by “+”, addition is performed.
However, when two character strings are
operated upon by “+”, the strings are
concatenated. Two very different opera-
tions are performed by the “+” operator
depending upon the type of variable.
Although the context of this example is
not object-oricnted, it does provide a
good introduction to the concept of over-
loading.

Inherit the Wind... And...

OK, OK, everything so far seems sim-
ple. I've heard that OO can get very com-
plex. It seems that if you just take some
time to understand the terminology, the
haze just lifts. Is it really this easy?

Yes and no. It is true that you must
understand the OO jargon before you can
understand the OO concepts. But OO can
be complex, too. For example, have you
heard about multiple inheritance?

Recall from the previous article in this
series that inheritance is the technique
whereby variables and methods from
higher level classes within a class hierar-
chy are available to be used by lower
level classes. But what if a lower level
class inherits from more than one higher
level class? Furthermore, what if some of
these higher level classes incorporate
some of the same methods and variables?
Consider the example shown in Figure 1.

In the example, the Politician class is
subordinate to the following classes:
Diplomat, Liar and Thief. The subordi-
nate class is often called the subclass; the
superior class is usually called the super-
class. If the method “Speak” is contained
in both the Diplomat class and the Liar
class, which one should the Politician
class inherit? Both? Either? Neither? This
question is still being debated within the

DATA MANAGEMENT REVIEW/ MAY 1993 29



00 Terminology

Abstract Dara Types — A data type
that is not built into the system but is
created by the developer to define a
specific object class.

Information Hiding — The tech-
nique of encapsulating data and pro-
cesses within a single object to hide the
specifics of the implementation from
methods that desire to access the data
or methods that act upon the data. The
implementation of information hiding
increases reusability.

Multiple Inheritance — When one
class within a class hierarchy has more
than one parent class (or superclass).

Overloading — When one method
name performs different operations for
different objects.

Persistence — The storage of the
state of dara variables between accesses.

Polymorphism — The use of a com-
mon interface to access different imple-
mentations of the same basic function
or operation.

Subclass — Superior, or parent class,
within a class hierarchy.

Superclass — Subordinate, or child
class, within a class hierarchy.

00 communiry. (Although in our some-
what humorous example the answer is
probably obvious!) Nevertheless, multi-
ple inheritance is a part of object-oriented
technology. Think of the ramifications
multiple inheritance could have on data
base design! Instead of implementing
numerous dara stores with numerous pro-
cedures operating on the data, ODBs
with multiple inheritance could reduce
not only the amount of code operating
upon the dara base structures bur also,
potentially, the number of data stores.
And the complexity doesn’t end there.
All MIS professionals understand the
concept of a data type. There are several
basic data types: integer, decimal and
character string. Some languages and data
bases may also provide date, time and
graphic data types. Object orientation
introduces abstract data types. An
abstract data type can be any form of data

or combination of other data types
defined to the OO system. They are not
built into the ODB or OOPL, but are tvp-
ically defined to correspond to an object.
Abstract data types can be thought of as
the defining structure of a class.

If | Had 20 Cents for All the
Paradigms

So all of my data processing woes can
be cured by object orientation, huh? Now
where have I heard that before? Maybe
when I decided to implement my first
relational DBMS. Or was it when |
bought into CASE or JAD or Information
Engineering, or maybe even way back
when structured programming was first
introduced. When will one of these new
paradigms deliver what I really need—
reduced application development time
and, even more importantly, reduced
maintenance costs?

Well, OO is not magic. Discipline is
still required to glean the benefits of OO.
But that same statement applies to all of
the aforementioned concepts. The failure
of any new technology or technique is
often times not the fault of the technolo-
gy but of the marketing hype. Until we in
the MIS industry understand that the real
cost of developing software lies in devel-
oping sound specifications and rigorous
models before beginning development,
we will never achieve the gains that are
desired. And we will never see any new
advance as all that it is hyped up to be.

It is true that technology can help to
reduce the strain of the software develop-
ment life cycle (SDLC). Bur it is just as
true that simply implementing new tech-
nology without an understanding of the
process that it is meant to automate is
probably worse than no technology at all.
The key to achieving gains in the SDLC
with OO is understanding that software
development must be planned and mod-
eled before implementation can begin.
With clear specifications, OO software
and dara base development and mainte-
nance can be easier than classic approach-
es. This is due to the following three fac-
tors:

e a closer correlation of the business
problem to the computerized imple-
mentation;

® an increase in reusability of methods;
and

* a decrease in the cost of maintenance
due to reduced duplication of code and
standard methods.

So the motivation for incorporating OO
technology into the SDLC is to achieve

more efficient software development. But

what is the cost? As with any paradigm

shift, the costs can be substantial. Each of
the following factors add to the cost of
implementing OO techniques:

e Jost time and effort due to rejection of
the new technology by those who
know the old technologies;

o as the realization settles in that object
orientation can produce real gains, the
cost shifts to time lost as people strug-
gle to shift their knowledge from the
classic framework system development
paradigm to the OO paradigm;

* depending upon your shop’s current
acceptance of modeling and SDLC
methodology, the cost of introducing
these concepts into your shop must be
factored in as well if OO is to be suc-
cessful; and

* as with any new technology, the cost of
0O rraining and education.

Synopsis

Object orientation provides many ben-
efits over classic software development.
But is there an OO revolution on the
horizon? Can the benefits of OO be real-
ized simply by modifying relational data
base systems with the best OO tech-
niques? Is this possible, and if so, is it
even desirable? Part 11T of this OO tutori-
al series will compare relational DBMS
systems to OODBMS systems. But in the
meantime, study the first two install-
ments of this series. Use the sidebar to
learn the new terms that we introduced in
this article and, as always, keep reading
Data Management Review for the most up-
to-date information on OODBMS.

| PLATINUM tech-

Craig 8. Mullins is a
member of the Technical
Advisory Group at

nology, inc. He has
more than seven years of
experience in all facets
of data base systems
development, including
developing and teaching '
DB2 classes, systems analysis and design, data |
base and systen administration and data anal- |
ysis. You can contact the author via Prodigy

[WHNX44A] ar Compuserve [70410,237].

Was this article of value to you? If 5o, please let
us know by circling Reader Service No. 36,

30 DATA MANAGEMENT REVIEW/ MAY 1993



