OBJECT-ORIENTED

o what’s all the fuss about object ori-

entation anyway? It seems like all we

ever hear about anymore is the
inevitable paradigm shift from procedural sys-
tems to object-oriented systems. That was OK
when they were just talking about program-
ming, but now it seems to be everywhere.
And, even more importantly, speaking as a
data technology professional, they're starting
to put an “O” on my data base. I've seen both
ODB (object data base) and OODBMS (object-
oriented data base management system)
bandied about in the industry trade journals.
What do I need to know? Just what does
object-oriented (0O0) mean? How will it affect
my DBMS-based development? Is OO just
another buzzword that I can safely ignore
until the next one comes buzzing along?

Well, I can sure sympathize with those of you who
have these types of questions about object orientation.
Unfortunately (or maybe fortunately after reading this
article), you will not be able to ignore QO for too much
longer. OO technology provides the system develop-
ment life cycle with too many benefits to simply fade
away. Yes, it seems as if OO technology will be with us
for some time to come. Therefore, the time has come to
begin understanding all of the concepts that are implied
by the term object-oriented.

As data analysts and data base professionals, OO can
provide many great benefits to the fields of data
administration and data base design. Because of these
benefits, OO technology is almost a shoo-in to be
incorporated into business DBMS implementations in
the not too distant future. Although object-oriented
data base management systems currently exist, few if
any, have been implemented within the large corpo-
rate accounts that relational DBMS systems dominate.
But DBMS technology is not alone in being impacted
by OO technology; the disciplines that surround the
data technology professional have also been impacted.
00 modeling, OO design, OO analysis, and evidently,
anything else you can stick two “O”s in front of, will
be impacted by the impending OO revolution. It is
probably a wise course of action, then, for data technol-
ogy professionals to become familiar with OO termi-
nology and functionality.

But will it be a revolution or an evolution that brings

=
R
—
~
x
>

OO techniques into our data
bases? [s it possible or realistic to
expect DP professionals and the
businesses they support to
embrace (both technically and
financially) another DBMS revolu-
tion? In the mid '80s DB2 was at
the forefront of the relational revo-
lution. Industry pundits and
academia predicted, correctly in
this instance, that future DBMS
development would be founded
upon the relational model instead
of the then popular network
(IDMS) and hierarchic (IMS)
models. Now DB2 owns the indus-
try for new mainframe-based, cor-
porate application development.
The revolution occurred, but it did
not completely topple the legacy
systems that were based on earlier
DBMS technology. For example,
few companies completely
replaced all of their IMS-based
systems with DB2. Most, however,
have embraced DB2 as the DBMS

The

ect-Oriented

utortal Sertes

To ODB or Not To ODB,

That Is the Question
Part1

platform of the present and fore-
seeable future.

What does this bode for
ODBMS? Two routes exist:

¢ revolution, completely jetti-
soning the relational medel for an
OO0 model and replacing DB2 with
an ODBMS based upon that
model; or

® evolution, adoption of key OO

-concepts into the relational model

followed by adapting DB2 to
incorporate QO functionality and
techniques.

Which is more realistic? Which
will provide a better development
environment? Which will finally be
chosen? We can all guess, but no
one truly knows... at least not vet!

The Object of Our Affection

OK, OK, enough introduction!
We’ve talked about history and
spoke in generalities about object
orientation, but I want more. The
introduction was interesting, but 1

12 DMR/ FEBRUARY 1593

e —— e

- m ama

really didn’t learn anvthing meaty about
object orientation. I'm ready to dig in and
learn something. So, what is an object,
anvway?

Well, let’s start at the beginning. OO
technology is fundamentally based upon,
what else, the object. Turn your attention,
for a moment, to a subject with which you
should be familiar: entity-relationship dia-
gramming. The data base modeler con-
structs an ER diagram that maps the enti-
ties in the real world together with the
inter-relationships of those entities with
one another, What is an entity? It is a real-
world “thing” of some sort or another
about which your computer-based appli-
cation needs to record information. Well,
an object can be thought of as a complex
entity.

But, before we go any further, let me
define a term I will be using throughout
this article: classic. The term classic refers
to the way things are currently done in the
procedural world of corporate data pro-
cessing. For example, when [speak of a
classic DBMS implementation, I mean a
DBMS traditionally used by business
today. This can mean CODASYL/net-
work (IDMS), hierarchic (IMS), inverted
list (ADABAS) and even relational (DB2,
Oracle). A classic application therefore
would be a procedural application (possi-
bly using a classic DBMS) based upon the
principles of structured programming.

So, back to objects. In a classic DBMS,
a logical entity is transformed into a physi-
cal representation of that entity solely in
terms of its data characteristics. Be it an
IMS segment or a DB2 table, data ele-
ments are stored within the physical rep-
resentation of the entity. These data ele-
ments describe the current state of that
entity. By contrast, an ODBMS would
define an entity in terms of both its state
and its behavior, In other words, an object
encapsulates both the data (state) and the
valid procedures that can be performed
upon the object’s data (behavior). See
Figure 1.

Realize, however, that the true defini-
tion of an object is much more complex
than this. [have purposely simplified this
discussion to introduce the notion of
encapsulation. The definition as stated
does, however, introduce the basic differ-
ence berween OO and classic methodolo-
gies. Think for a moment in classic terms:
Many procedures are required to operate
upon independent data structures. Each
procedure must retrieve the darta, operate
upon it in some way, and possibly replace
the data. In the OO paradigm, messages

are passed to objects invoking the encap-
sulated methods. Because each object
contains its own operations, or methods,
most of the procedural code is eliminated
and reusability is increased.

Remember, though, we are still talking
basics. We have entirely avoided features
that further enrich objects such as classes
and inheritance. But, even though we
have kept the discussion at a very basic
level thus far, we have learned a very
valuable component of the OO paradigm.
Just remember that “an object encapsu-
lates both data and process™ and you will
have learned vour first OO lesson!

Class Is in Session

I think T get the basic idea. Let's see,
instead of designing the data and proce-
dure portions of our applications separate-
ly, with OO techniques we design them
together. But we don’t stop there. We
actually implement them that way—
together. But vou said that we had just
scratched the surface of objects. What did
you mean? Is there a lot more to know?

I should hope so! Object-oriented tech-
nology is neither as complicated as people
make it sound nor as simple as just under-

standing the concept of encapsulation.
We must delve deeper into the core of
what is implied by the term “object.”
Let's start with a simple question: How
are objects defined? An object is much
more than just a data store encapsulated
with its related procedures. It is a means
of grouping real-world “things.” In the
real world, things are not simple. Data
administrators discovered this long ago.
That is why data models are deemed to
be so important. It is simply not viable to
implement an application system without
first systematically and methodically
examining the characteristics of the dara
that the system must support. Object-ori-
ented technology takes this a step forward
by making it important to not only model
both data and process before proceeding,
but modeling them both together.
Importantly, object-oriented technolo-
gy enables objects to be defined based on
the characteristics of other objects. Quite
often one real-world thing is very similar
to another in both composition and func-
tion. However, some (or many) of their
qualities may differ in significant and
meaningful ways. Are these objects the
same? Should they be physically imple-

14 DMR/ FEBRUARY 1993

Figure 1: Encapsulation

0BJECT

Data Process
Figure 2: Example Employee Hierarchy
Employee
Salaried Hourly
Vice
President Manager
CEO

mented and stored separately or not?
Classic implementation techniques have
not generally agreed upon methodology
for creating similar, yet different, entities.
Some may be implemented physically
within the same data store; others sepa-
rate. In some instances, a combination of
separation and combination may be used.
This results in a confusing physical imple-
mentation. Object-oriented technology
uses a single technique known as inheri-
tance to implement objects.

Let’s learn by example. Consider the
task of trying to model the employees of
an organization. In any organization, all
employees exhibit many common charac-
teristics (job duties, a salary of some sort,
employee identification, etc.). However,
based upon the type of job that they per-
form, employees can also take on quite

different characteristics. Figure 2 is an
example of different types of employees.

A data model would define the “what”
of these types of employees. It would
probably employ some type of hierarchy
to depict these relationships. An object-
oriented model embodies both data and
process. Further, the implementation of
the object-oriented model implements
both data and process together.

It is quite obvious that each of these
categories can be treated differently.
However, they are also all employees with
certain shared attributes and functions.
How should this be implemented? The
object-oriented paradigm uses classes to
implement this hierarchical delineation of
objects quite elegantly.

All objects are based upon a class. Each
of the employee types in Figure 2 would

be implemented as a class. The class
would define the attributes and methods
for objects assigned to that class. So, in
retrospect, when we stated that objects
encapsulate data and process, we should
have said that classes provide this encap-
sulation. Figure 2, therefore, can also be
said to represent a class hicrarchy of
employees.

What is gained by having classes? To
explain this, we must define another OO
concept introduced earlier: inheritance.
Subordinate classes in a hierarchy inherit
the variables and methods of superior
classes. Simply stated, every class has all
of the variables and methods of higher
level classes available to it. So, those
things which are common to employees
are stored at the highest level. Those
things which are specific to a certain type
of employee are stored at lower levels
within the class hierarchy. This enables
each class to be similar, yet distinct.

You can see that a significant amount of
modeling activity is necessary to derive
benefit from this implementation. You
must understand which procedures and
data elements apply to which class before
you develop your OO applications. With a
good model and object-oriented tech-
niques, you can derive the benefits of
reusability, thereby reducing the length of
the application development life cycle.

Synopsis

Hopefully, we have builc a foundation
upon which further object-oriented con-
cepts and techniques can be discussed.
Remember, there is much more to object
orientation than the basics we have cov-
ered in this article. For example, OO tech-
nology also incorporates complex ideas
such as abstract data types, polymorphism,
overloading, multiple inheritance and per-
sistence. The sidebar on Object-Oriented
Terminology (page 15) will help you
review and learn the basics. Future issues
of Data Management Review will review
object-oriented technology.

Craig 8. Mullins is a member of the Technical
Advisory Group ar PLATINUM technology, inc.
He has more than seven years of experience in all
facets of data base systems development, including
developing and teaching DB2 classes, systems
analysts and design, data base and system admin-
istration, and data analysis. You can contact the
author via Prodigy [WHNX44A] or Compuserve
[70410,237].

B Was this article of value 1o you? If so, please
Jet us know by circling Reader Service No. 31.

16 DMR/ FEBRUARY 1993

