
 

 


 Craig S. Mullins 
Return to Home Page

Vol. 13, No. 3 (February 2007)
 

The Buffer Pool

Why Haven't You Started Using Real-Time Statistics?

By Craig S. Mullins

To maintain efficient production DB2-based systems, you must
periodically monitor the DB2 objects that make up those systems.
This type of monitoring is an essential component of post-
implementation duties because the production environment is
dynamic. Fluctuations in business activity, changes in data access
patterns, or lack of attention to administrative needs can cause a
system to perform inadequately. An effective strategy for
monitoring DB2 objects in the production environment will catch
and forestall problems before they affect performance.

http://www.craigsmullins.com/


One type of DB2 database object monitoring is to query the DB2
Catalog tables. This approach requires regular RUNSTATS
executions to keep your statistics up-to-date in the catalog. If you
don’t do that, then your catalog queries will be returning outdated
information about your database objects.

There is, however, a relatively newer feature of DB2 that delivers
real time statistics providing up-to-date information about DB2
database objects. This feature is called, appropriately enough,
Real Time Statistics, or RTS for short.

There is a general wariness “out there” precluding widespread
adoption and implementation of RTS. My very unscientific polling
of DB2 user group attendees indicates that only a smattering of
DB2 shops are using RTS. This is a shame because RTS delivers
autonomic capabilities that help to reduce CPU (by eliminating
some RUNSTATS jobs) and more up-to-date administration
statistics for scheduling your DB2 utilities.

Perhaps after reading this column you will re-think your stance if
yours is one of the shops that has yet to embrace RTS.

Autonomic Statistics

Real Time Statistics (RTS) is one of the first steps in IBM’s grand
plans to automate parts of DB2 database administration.
Introduced after the general availability of Version 7, but before
Version 8, RTS provides functionality that maintains statistics about
DB2 databases “on the fly,” without having to run a utility program.



Prior to the introduction of RTS, the only way to gather statistics
about DB2 database structures was by running the RUNSTATS
utility. As I already briefly mentioned, RUNSTATS collects
statistical information about DB2 database objects and stores this
data in the DB2 Catalog. RTS, on the other hand, runs in the
background and automatically updates statistics in two special
tables as the data in DB2 databases is modified. Where
RUNSTATS is a hands-on administrative process, RTS is hands-
off.

Now don’t misunderstand; the real time statistics cannot entirely
replace RUNSTATS. Although several of the statistics are similar,
RTS is never used by the optimizer to determine access paths. But
RTS can be used by DBAs to better administer DB2 databases.

The RTS Tables

Although DB2 is always collecting RTS data, nothing is
externalized until you set up the RTS database and tables to store
the real time statistics. The RTS database is named DSNRTSDB
and there is one table space (DSNRTSTS) with two tables:

·       
SYSIBM.TABLESPACESTATS:--Contains statistics on table
spaces and table space partitions

·       
SYSIBM.INDEXSPACESTATS:--Contains statistics on index
spaces and index space partitions



The columns in the SYSIBM.TABLESPACESTATS table are
outlined in Table 1.  And the columns in the
SYSIBM.INDEXSPACESTATS table are shown in Table 2.

 

 Table 1. RTS Columns in SYSIBM.TABLESPACESTATS:

Column Description
DBNAME The name of the database.
NAME The name of the table space. 
PARTITION The data set number within the

table space. 
DBID The internal identifier of the

database. 
PSID The internal identifier of the

table space page set
descriptor. 

UPDATESTATSTIME The timestamp when the row
was inserted or last updated. in
the TABLESPACESTATS table 

TOTALROWS The number of rows or LOBs in
the table space or partition. 

NACTIVE The number of active pages in
the table space or partition. 

SPACE The amount of space, in KB,
that is allocated to the table
space or partition. 



EXTENTS The number of extents in the
table space or partition. Multi-
piece table spaces = extents
for the last data set. 

LOADRLASTTIME The timestamp of the last
LOAD REPLACE on the table
space or partition. 

REORGLASTTIME The timestamp of the last
REORG on the table space or
partition.

REORGINSERTS The number of records or LOBs
that have been inserted since
the last REORG or LOAD
REPLACE

REORGDELETES The number of records or LOBs
that have been deleted since
the last REORG or LOAD
REPLACE 

REORGUPDATES The number of rows that have
been updated since the last
REORG or LOAD REPLACE 

REORGDISORGLOB The number of LOBs that were
inserted since the last REORG
or LOAD REPLACE that are
not perfectly chunked.

REORGUNCLUSTINS The number of records that
were inserted since the last



REORG or LOAD REPLACE
that are not well-clustered 

REORGMASSDELETE The number of mass deletes or
dropped tables from a
segmented table space, since
the last REORG or LOAD
REPLACE. 

REORGNEARINDREF The number of overflow
records created since the last
REORG or LOAD REPLACE
relocated near the pointer
record. 

REORGFARINDEF The number of overflow
records created since the last
REORG or LOAD REPLACE
relocated far from the pointer
record. 

STATSLASTTIME The timestamp of the last
RUNSTATS on the table space
or partition. 

STATSINSERTS The number of records or LOBs
that have been inserted since
the last RUNSTATS on the
table space or partition. 

STATSDELETES The number of records or LOBs
that have been deleted since
the last RUNSTATS on the
table space or partition.



STATSUPDATES The number of rows that have
been updated since the last
RUNSTATS on the table space
or partition. 

STATSMASSDELETE The number of mass deletes ,
or the number of dropped
tables from a segmented TS,
since the last RUNSTATS. 

COPYLASTTIME The timestamp of the last full or
incremental image copy on the
table space or partition.

COPYUPDATEDPAGES The number of distinct pages
that have been updated since
the last COPY. 

COPYCHANGES The number of insert, delete,
and update operations since
the last COPY. 

COPYUPDATELRSN The LRSN or RBA of the first
update after the last COPY. 

COPYUPDATETIME The timestamp of the first
update after the last COPY. 

 

 

Table 2. RTS Columns in SYSIBM.INDEXSPACESTATS:



Column Description
DBNAME The name of the database.
NAME The name of the index space. 

PARTITION

This column is used to map a
data set number in an index
space to its statistics. 

DBID
The internal identifier of the
database. 

ISOBID
The internal identifier of the index
space page set descriptor. 

PSID

The internal identifier of the table
space page set descriptor for the
table space associated with the
index 

UPDATESTATSTIME
The timestamp when the row was
inserted or last updated. 

TOTALENTRIES

The number of entries, including
duplicate entries, in the index
space or partition. 

NLEVELS
The number of levels in the index
tree. 

NACTIVE

The number of active pages in
the index space or partition. This
value is equivalent to the number
of preformatted pages. 

SPACE The amount of space, in KB, that
is allocated to the index space or



partition.

EXTENTS

The number of extents in the
index space or partition. On multi-
piece index spaces=extents for
the last data set. 

LOADRLASTTIME

The timestamp of the last LOAD
REPLACE on the index space or
partition. 

REBUILDLASTTIME

The timestamp of the last
REBUILD INDEX on the index
space or partition. 

REORGLASTTIME

The timestamp of the last
REORG INDEX on the index
space or partition. 

REORGINSERTS

The number of index entries that
have been inserted since the last
REORG, REBUILD INDEX, or
LOAD REPLACE 

REORGDELETES

The number of index entries that
have been deleted since the last
REORG, REBUILD INDEX, or
LOAD REPLACE 

REORGAPPENDINSERT

The number of index entries that
have been inserted since the last
REORG, REBUILD INDEX, or
LOAD REPLACE 

REORGPSEUDODELETES The number of index entries that



have been pseudo-deleted since
the last REORG, REBUILD
INDEX, or LOAD REP

REORGMASSDELETE

The number of times that an IX
space/partition was mass deleted
since the last REORG, REBUILD
INDEX, or LOAD REP 

REORGLEAFNEAR

The number near of index page
splits that occurred since the last
REORG, REBUILD INDEX, or
LOAD REPLACE 

REORGLEAFFAR

The number of far index page
splits that occurred since the last
REORG, REBUILD INDEX, or
LOAD REPLACE

REORGNUMLEVELS

The number of levels in the index
tree that were added or removed
since the last REORG, REBUILD
INDEX, or LOAD REP 

STATSLASTTIME

The timestamp of the last
RUNSTATS on the index space
or partition. 

STATSINSERTS

The number of index entries that
have been inserted since the last
RUNSTATS

STATSDELETES The number of index entries that
have been deleted since the last



RUNSTATS 

STATSMASSDELETE

The number of times that the
index or index space partition was
mass deleted since the last
RUNSTATS. 

COPYLASTTIME

The timestamp of the last full
image copy on the index space or
partition. 

COPYUPDATEDPAGES

The number of distinct pages that
have been updated since the last
COPY. 

COPYCHANGES
The number of insert or delete
operations since the last COPY. 

COPYUPDATELRSN
The LRSN or RBA of the first
update after the last COPY. 

COPYUPDATETIME
The timestamp of the first update
after the last COPY. 

Each table has a unique index defined on it. Both are defined on
the DBID, PSID, and PARTITION columns. The indexes names
are:

·        
SYSIBM.TABLESPACESTATS_IX 
 

·        
SYSIBM.INDEXSPACESTATS_IX 
 



When are Real Time Stats Externalized?

As soon as RTS is applied (by running the proper version or
maintenance level of DB2), DB2 begins to gather real time
statistics. However, the RTS tables must exist in order for DB2 to
externalize the real time statistics that it gathers.

Once the RTS tables have been created and started, DB2
externalizes real-time statistics to the tables at the following times:

·       
When the RTS database is stopped, DB2 first
externalizes all RTS values from memory into the
RTS tables before stopping the database.
 

·       
When an individual RTS table space is stopped, DB2
first externalizes all RTS values for that particular
table space from memory into the RTS tables before
stopping the database. Keep in mind, though, that the
default installation uses only a single table space to
store both RTS tables.
 

·       
When you issue -STOP DB2 MODE(QUIESCE), DB2
first externalizes all RTS values. Of course, if you
stop using MODE(FORCE) no RTS values are
externalized; instead, they are lost when DB2 comes
down.
 



·       
As specified by the DSNZPARM STATSINT value.
The default is every 30 minutes.
 

·       
During REORG, REBUILD INDEX, COPY, and LOAD
REPLACE utility operations DB2 externalizes the
appropriate RTS values impacted by running that
utility.

RTS Accuracy

One of the “problems” that you may encounter when embarking on
your RTS implementation is the initialization of the columns in the
RTS tables. All of the counters and timestamp columns are set to
null, so they are basically useless until you initialize them. Oh, DB2
will try to externalize the RTS values based on STATSINT, but
consider what will happen.

Let’s use the REORGINSERTS column as an example. It should
contain the number of INSERTs since the last REORG. So say we
have inserted 15 new rows. The STATSINT interval is hit and DB2
goes to externalize the data. It tries to add 15 to REORGINSERTS.
But REORGINSERTS is currently NULL, so NULL plus 15 is
NULL. Problem, right?

Therefore, for each object for which you want real-time statistics,
the IBM DB2 Administration Guide manual directs that we need to
run the appropriate utility (REORG, RUNSTATS, LOAD REPLACE,
REBUILD INDEX, or COPY) to establish a base value from which



the delta value can be calculated. Of course, this is time-
consuming and potentially disruptive. Another approach is to run
RUNSTATS and then use the values from the system catalog to
initialize the RTS values. To do this, you would:

·       
Set all counters to zero

·       
Set all dates to 0001-01-01-00.00.00.000000

·       
Set TOTALROWS and TOTALENTRIES to CARDF

Additionally, in certain situations, the RTS values may not be 100%
accurate. Situations that can cause the real time statistics to be off
include:

·       
Sometimes a restarted utility can cause the RTS
values to be wrong
 

·       
Utility operations that leave indexes in a restrictive
state, such as RECOVER pending (RECP) will cause
stats to be inaccurate. 
 

·       
A DB2 subsystem failure
 

·       
A notify failure in a data sharing environment



To fix RTS statistics that are inaccurate, run a REORG,
RUNSTATS, or COPY on the objects for which that stats are
suspect. Furthermore, if you are using DB2 utilities from a third
party vendor other than IBM, be sure that those utilities work with
RTS. The third party utilities should be able both to reset the RTS
values and use the RTS stats for recommending when to run
utilities.

Using the Real Time Statistics

The following RTS guidelines and queries can be used against to
help you identify maintenance and administration that needs to be
carried out for database objects in your DB2 subsystems.

Checking for Activity

Because real time statistics are updated in an ongoing manner as
DB2 operates, you can use them to see if any activity has occurred
during a specific timeframe. To determine whether any activity has
happened in the past several days for a particular table space or
index, use the UPDATESTATSTIME column. Here is an example
checking whether any activity has occurred in the past ten days for
a table space (just supply the table space name):

SELECT   DBNAME, NAME, PARTITION,
         UPDATESTATSTIME
FROM     SYSIBM.TABLESPACESTATS
WHERE    (JULIAN_DAY(CURRENT DATE) - 



          JULIAN_DAY(UPDATESTATSTIME)) <= 10
AND      NAME = ?;

Basic Table Space Information

The RTS tables contain some good basic information about table
spaces. The following query can be run to report on the number of
rows, active pages, space used, number of extents, and when the
COPY, REORG, LOAD REPLACE, and RUNSTATS were last run:

SELECT   DBNAME, NAME, PARTITION, TOTALROWS,
         NACTIVE, SPACE, EXTENTS,
         UPDATESTATSTIME, STATSLASTTIME,
         LOADRLASTTIME, REORGLASTTIME,
         COPYLASTTIME
FROM     SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

You can add a WHERE clause to this query to limit the output to
only a certain database or for specific table spaces.

Pay particular attention to the timestamps indicating the last time
that COPY, REORG, and RUNSTATS were run. If the date is
sufficiently old, consider further investigating whether you should
take an image copy, reorganize the table space, or run
RUNSTATS.

Keep in mind though, that the span of time between utility runs is
not the only indicator for when to copy, reorganize, or capture



statistics. For example, RUNSTATS may need to be run only once
on static data; similar caveats apply to COPY and REORG when
data does not change.

Reorganizing Table Spaces

Statistics that can help determine when to reorganize a table
space include: space allocated, extents, number of INSERTs,
UPDATEs, and DELETEs since the last REORG or LOAD
REPLACE, number of unclustered INSERTs, number of
disorganized LOBs, and number of near and far indirect references
created since the last REORG.

SELECT   DBNAME, NAME, PARTITION, SPACE,
         EXTENTS, REORGLASTTIME, REORGINSERTS,
         REORGDELETES, REORGUPDATES,
         REORGINSERTS+REORGDELETES+REORGUPDATES
              AS TOTAL_CHANGES,
         REORGDISORGLOB, REORGUNCLUSTINS,
         REORGMASSDELETE, REORGNEARINDREF,
         REORGFARINDREF
FROM     SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

You might want to add a WHERE clause that limits the table
spaces returned to just those that exceed a particular limit. For
example:

Specify                                              Description



WHERE EXTENTS > 20                           Table spaces having more than 20
extents

WHERE TOT_CHANGES > 100000           Table spaces with more than 100K
changes

WHERE REORGFARINDREF > 50            Table spaces with more than 50 far
indirect references

Another way to get more creative with your RTS queries is to build
formulas into them to retrieve only those table spaces that need to
be reorganized. For example, the following query will return only
those table spaces having more than 10% of their rows as near or
far indirect references:

SELECT   DBNAME, NAME, PARTITION, SPACE, EXTENTS
FROM     SYSIBM.TABLESPACESTATS
WHERE    (((REORGNEARINDREF + REORGFARINDREF)
             *100
           )/TOTALROWS
          ) > 10
ORDER BY DBNAME, NAME, PARTITION;

Of course, you can change the percentage as you wish. After
running the query you have a list of table spaces meeting your
criteria for reorganization.

Examining the Impact of a Program



You can use the TOTALROWS column of
SYSIBM.TABLESPACESTATS to determine how many rows were
impacted by a particular program or process. Simply check
TOTALROWS for the table space both before and after the
process; the difference between the values is the number of rows
impacted.

When to Run RUNSTATS for a Table Space

There are also statistics to help in determining when RUNSTATS
should be executed. Run the following query to show the number
of INSERTs, UPDATEs, and DELETEs since the last RUNSTATS
execution:

SELECT   DBNAME, NAME, PARTITION,
         STATSLASTTIME, STATSINSERTS,
         STATSDELETES, STATSUPDATES,
         STATSINSERTS+STATSDELETES+STATSUPDATES
               AS TOTAL_CHANGES,
         STATSMASSDELETE
FROM     SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

When to Take an Image Copy for a Table Space

You can issue the following query to report on statistics that will
help you to determine whether a COPY is required:



SELECT   DBNAME, NAME, PARTITION, COPYLASTTIME,
         COPYUPDATEDPAGES, COPYCHANGES,
         COPYUPDATELRSN, COPYUPDATETIME
FROM     SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

Basically, as the number of distinct updated pages and changes
since the last COPY execution increase, the need to take an image
copy increases. A good rule of thumb to follow is when the
percentage of updated pages since the last COPY is more than
25% of the active pages, then it is time to COPY the table space.
You can add the following WHERE clause to the above query to
limit the output to only these table spaces:

WHERE ((COPYUPDATEDPAGES*100) / NACTIVE) > 25

Basic Index Space Information

Do not forget that there are also RTS statistics gathered on
indexes. The following query can be run to report on the number of
rows, active pages, space used, number of extents, and when the
COPY, REORG, LOAD REPLACE, and RUNSTATS were last run:

SELECT   DBNAME, INDEXSPACE, PARTITION,
         TOTALENTRIES, NLEVELS, NACTIVE, 
         SPACE, EXTENTS, UPDATESTATSTIME,
         LOADRLASTTIME, REBUILDLASTTIME,
         REORGLASTTIME, STATSLASTTIME,
         COPYLASTTIME



FROM     SYSIBM.INDEXPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

Reorganizing Index Spaces

Just like the table space stats, there are index space statistics that
can be used to determine when to reorganize indexes. These
statistics include the last time REBUILD, REORG or LOAD
REPLACE occurred, as well as statistics showing the number of
INSERTs and DELETEs since the last REORG or REBUILD. And
RTS does not skimp in the details. You get both real and pseudo
DELETEs, as well as both singleton and mass DELETE
information. RTS also tracks both the number of index levels and
index page split information resulting in near and far indirect
references since the last REORG, REBUILD INDEX, or LOAD
REPLACE. The following query can be used to return this
information:

SELECT   DBNAME, NAME, PARTITION, 
         REORGLASTTIME, LOADRLASTTIME,
         REBUILDLASTTIME, TOTALENTRIES,
         NACTIVE, SPACE, EXTENTS, NLEVELS,
         REORGNUMLEVELS, REORGINSERTS,
         REORGAPPENDINSERT, REORGDELETES,
         REORGPSEUDODELETES, REORGMASSDELETE, 
         REORGLEAFNAR, REORGLEAFFAR
FROM     SYSIBM.INDEXPACESTATS
ORDER BY DBNAME, NAME, PARTITION;



These statistics can be examined after running jobs or processes
that cause heavy data modification.    

Pay particular attention to the REORGAPPENDINSERT column. It
contains the number of inserts into an index since the last REORG
for which the index key was higher than any existing key value. If
this column consistently grows, you have identified an object
where data is inserted using an ascending key sequence. Think
about lowering the free space for such objects because the free
space is wasted space if inserts are always done in ascending key
sequence.

When to Run RUNSTATS for an Index Space

RTS provides index space statistics to help determine when to run
RUNSTATS similar to the table space statistics. Run the following
query to show the number of INSERTs, UPDATEs, and DELETEs
since the last RUNSTATS execution:

SELECT   DBNAME, NAME, PARTITION,
         STATSLASTTIME, STATSINSERTS,
         STATSDELETES, STATSMASSDELETE
FROM     SYSIBM.TABLESPACESTATS
ORDER BY DBNAME, NAME, PARTITION;

Summary

Real time statistics can be used to augment your DB2 object monitoring process. Be sure to
take advantage of the continuously updated RTS values to improve the administration and
performance of your DB2 databases



 

From IDUG Solutions Journal, February  2007.

 
© 2007
Craig S. Mullins, All rights reserved.
Home.   

http://www.idug.org/
http://www.craigsmullins.com/

