16

Stored Procedures in
DB2 Version 4

BY CRAIG S. MULLINS

The Basics

Stored procedures are spe-
cialized pieces of code that are
stored in a Relational
DataBase Management Sys-
tem (RDBMS). The motivat-
ing reason for stored proce-
dure support is to move SQL
code off of the client and onto
the database server. This re-
sults in less overhead because
one client request can invoke
multiple SQL statements.

Stored procedures can be
thought of as similar to other
database objects such as
tables, views and indexes be-
cause they are controlled by
the DBMS. Depending upon
the particular implementa-
tion, stored procedures may
also physically reside in the
RDBMS. However, a stored
procedure is not “physically”
associated with any other ob-
ject in the database. It can
access and/or modify data in
one or more tables. Basically,
stored procedures can be
thought of as “programs” that
“live” in the RDBMS.

A stored procedure must
be directly and explicitly in-
voked before it can be executed.
In other words, stored proce-
dures are not event-driven.
Contrast this with the concept
of database triggers, which are
event-driven and never explic-
itly called. Instead, triggers

are automatically executed
(sometimes referred to as
“fired”) by the RDBMS as the
result of an action. Stored pro-
cedures are never automati-
cally invoked.

DB2’s Stored Procedure

Implementation

DB2 for MVS Version 4 pro-
vides stored procedure sup-
port. However, if you have ex-
perience using stored proce-
dures in another RDBMS, you
will notice immediately that
DB2’simplementationis quite
different. Both Sybase SQL
Server and Oracle 7 enable
users to code stored procedures
using procedural extensions to
SQL: Sybase provides Trans-
act SQL and Oracle provides
PL/SQL. DB2, on the other
hand, enables stored proce-
dures to be written in tradi-
tional languages. Any LE/370-
supported language can be
used to code stored procedures.
The current list of supported
languages therefore is:

e Agsembler;

° C;

e COBOL; and
e PL/I.

DB2 stored procedures can
issue both static and dynamic
statement SQL statements
with the exception of CALL,
COMMIT, ROLLBACK, CON-
NECT, SET CONNECTION

and RELEASE. Additionally,
a stored procedure can issue
DB2 commands and IFI calls.
Stored procedures can access
flat files, VSAM files and other
files as well as DB2 tables.
Additionally, because stored
procedures utilize the Call
Attach Facility (CAF), they can
access resources in CICS, IMS
and other MVS address spaces.

Once coded, stored
procedures must be registered
in the DB2 Catalog. This is in
sharp contrast to the manner in
which other database objects are
recorded in the DB2 Catalog.
Typically, when an object is
created, DB2 automatically
stores the meta data description
of that object in the appropriate
DB2 Catalog tables. For
example, when a new table is
created, DB2 automatically
records the information in
SYSIBM.SYSTABLES,
SYSIBM.SYSCOLUMNS and
possibly SYSIBM.SYSFIELDS.
Since stored procedures are not
created within DB2, nor are they
created using DDL, an
administrator must use SQL
INSERT statements to populate
a new DB2 Catalog table,
SYSIBM.SYSPROCEDURES,
with the meta data for the stored
procedure (refer to Table 1 fora
description of this table).

After the stored procedure
has been registered to DB2, it

IDUG Solutions Journal = April 1995

must be started using a new
DB2 command:
-START PROCEDURE (procedure name)

A stored procedure cannot
be executed until it has first
beenstarted. Two additional ad-
ministrative commands for
stored pro-cedures have been
added:

-STOP PROCEDURE(procedure name)
ACTION(REJECT | QUEUE)

The stop command will dis-
able subsequent executions of
the named stored procedure.
The ACTION parameter can
be specified to indicate

the stored procedure will be
entirely rejected or queued to
be run when the stored proce-
dure is started again.
-DISPLAY PROCEDURE(procedure
name)
The display command can
be used to monitor the status
of stored procedures. This com-
mand will show:
¢ whether the named proce-
dure is currently started or
stopped;

¢ how many requests are cur-
rently executing;

¢ the high water mark for con-
currently running requests;

The authorization id of the user running the SQL application
that issued the CALL. If the column is blank then the row

LUNAME of the system that issued the CALL. The LUNAME
can refer to a local or remote system. If the column is blank

The MVS load madule corresponding to the application

Indicates whether the parameters passed to this stored

The collection id of the package for this stored procedure.

The programming language used to code this stored

The number of service units permitted for the execution of
this stored procedure before cancellation. If ASUTIME is

Indicates if a module is to remain in memory after the stored

The parameter list expected by the stored procedure when

whether future attempts torun
Table 1: SYSIBM.SYSPROCEDURES Columns

PROCEDURE The name of the stored procedure.
AUTHID

applies to all AUTHIDs.
LUNAME

then the row applies to all systems.
LOADMGD

program that is to be used.
LINKAGE

procedure can contain NULLS.
COLLID
LANGUAGE

procedure.
ASUTIME

zero, there is no limit.
STAYRESIDENT

procedures finishes.
IBMREQD IBM supplied information.
RUNOPTS A list of run-time options for this stored procedure.
PARMLIST

it runs.

¢ how many requests are cur-
rently queued;

¢ the high water mark for con-
currently running requests;
and

* how many times a request
has timed-out.

To run a stored procedure
the user must explicitly issue
a CALL statement. For ex-
ample, the following statement
calls a stored procedure named
SAMPLE sending a literal
string as a parameter:

EXEC SQL
CALL SAMPLE('ABC")
END-EXEC.

Stored proceduresrunina
new DB2 address space known,
appropriately enough, as the
Stored Procedure Address
Space (SPAS). IBM made a
wise move in forcing stored
procedures to run in their own
address space because it will
eliminate the possibility of
potentially bug-ridden stored
procedure code “stepping on”
the DB2 address spaces.

Why Use Stored
Procedures?

The predominant reason for
using stored procedures is to
promote code reusability. In-
stead of replicating code on
multiple servers, stored proce-
dures enable code to reside in a
single place: the database
server. Stored procedures then
can be called from client pro-
grams to access DB2 data. This
is preferable to cannibalizing
sections of program code foreach
new application that must be
developed. By coding a stored
procedure, the logic can be in-
voked from multiple processes
instead of being re-coded into
each new process every time the
code is required.

An additional benefit of
stored procedures is increased

IDUG Solutions Journal » April 1995

20

consistency. If every user with

" the same requirements is call-

ing the same stored procedures,
then the DBA can be assured
that everyone is running the
same exact code. If each indi-
vidual user used his or her own
individual and separate code,
noassurance could begiven that
the same logic was being used
by everyone. In fact, it is almost
a certainty that inconsistencies
will occur.

Stored procedures are par-
ticularly useful for reducing the
overall code maintenance effort.
Because the stored procedure
exists in one place, changes can
bemade quickly without requir-
ing propagation of the change
to multiple workstations.

Another common reason to
employ stored procedures is to
enhance performance. A stored
procedure may result in en-
hanced performance because
it is typically stored in parsed
(or compiled) format thereby
eliminating parser overhead.
Additionally, in a client/server
environment, stored proce-
dures will reduce network traf-
ficbecause multiple SQL state-
ments can be invoked with a
single execution of a procedure
instead of sending multiple re-
quests across the communica-
tion lines.

Additionally, stored proce-
dures can be coded to support
database integrity constraints,
implement security require-
ments, reduce code mainte-
nance efforts and support re-
mote data access.

Procedural SQL?

How is DB2’s stored proce-
dure support different than the
other RDBMS vendors? Well,
the biggest difference is the
manner in which the stored pro-
cedure is coded. As mentioned

at the beginning of this article,
Oracle and Sybase utilize pro-
cedural dialects of SQL for stored
procedure creation.

But what is procedural SQL?
One of the biggest benefits de-
rived from SQL (and RDBMS
products in general)is the ability
to operate on sets of data with a
single line of code. Using a single
SQL statement, multiple rows
can be retrieved, modified or re-
moved in one fell swoop! How-
ever, thisvery capability alsolim-
its SQL’s functionality. A proce-
dural dialect of SQL eliminates
this drawback through the addi-
tion of looping, branching and
flow of control statements. Pro-
cedural SQL has major implica-
tions on database design.

Procedural SQL will look fa-
miliar to anyone who has ever
written any type of SQL or coded
using any type of programming
language. Typically, procedural
SQL. dialects contain constructs
to support looping (while), exit-
ing (return), branching (goto),
conditional processing
(if...then...else), blocking
(begin...end) and variable defi-
nition and usage.

The Benefits of Procedural
SQL

The most useful procedural

extension to SQL is the addition
of procedural flow control state-
ments. Flow control within a
procedural SQL is handled by
typical programming constructs
that can be mixed with stan-
dard SQL statements. These
typical constructs enable pro-
grammers to:

eembed SQL statements
within a loop;

e group SQL statements to-
gether into executable
blocks;

e test for specific conditions
and perform one set of SQL

statements when the condi-
tionis true, another set when
the condition is false (if ...
else);

¢ suspend execution until a
pre-defined condition occurs
or a preset amount of time
expires; and

e perform unconditional
branches to other areas of
the procedural code.

The addition of procedural
commands to SQL provides a
more flexible environment for
application developers.
Oftentimes, major components
of an application can be deliv-
ered using nothing but SQL.
Stored procedures and complex
triggers can be coded using pro-
cedural SQL, thereby reduc-
ing the amount of host lan-
guage (COBOL, C,
PowerBuilder, etc.) program-
ming required. This is a major
benefit.

Additionally, when stored
procedures (and triggers) can
be written using just SQL,
more users will be inclined to
use these features. DB2 Ver-
sion 4 requires stored proce-
dures to be written in a host
language. This may scare off
many potential developers.
Most DBAs I know avoid pro-
gramming like the plague.

In addition to SQL-only
stored procedures, procedural
SQL extensions also enable
more complicated business re-
quirements to be coded using
nothing but SQL. For example,
ANSI SQL provides no mecha-
nism to examine each row of a
result set during processing.
A procedural SQL can accom-
plish this quite handily using
cursors and looping.

The Drawbacks of
Procedural SQL
The biggest drawback to

IDUG Solutions Journal * April 1995

procedural SQL is that it is
not currently in the ANSI SQL
standard. DB2’s stored proce-
dure support is based upon the
ANSI SQL3 standard. Lack of
ANSI support can result in
each DBMS vendor support-
ing a different flavor of proce-
dural SQL. If your shop has
standardized on one particu-
lar DBMS or does not need to
scale applications across mul-
tiple platforms, then this may
not be a problem. But, then
again, how many shops does
this actually describe? Not
many, I’d venture to guess!
The bottom line is that
scalability will suffer when ap-
plications are coded using non-
standard extensions—like pro-
cedural SQL. Itis a non-trivial
task to re-code applications
that were designed to use
stored procedures and triggers
using procedural SQL con-
structs. Ifan application needs
to be scaled to a platform that

utilizes a DBMS that does not
support procedural SQL, this
is exactly what must be done.

Performance drawbacks
can berealized when using pro-
cedural SQL if the developer
is not careful. For example,
improper cursor specification
can cause severe performance
problems. But, this can hap-
pen just as easily when cur-
sors are used inside a host lan-
guage. The problem is more
inherent to application design
than it is to procedural SQL.

The final drawback is that
even procedural SQL dialects
are not computationally com-
plete. Most dialects of proce-
dural SQL lack programming
constructs to control the users
screen and mechanisms for
data input/output (other than
to relational tables).

Conclusion
Although not new to the
RDBMS industry, stored pro-

cedures are a powerful new
feature of DB2 Version 4. They
enable multiple data access
statements to be executed with
a single request. Additionally,
they are controlled and man-
aged by DB2 providing a con-
sistent and reusability point
of reference for frequently ex-
ecuted database code. As such,
they promise to be one of the
most exciting and useful fea-
tures of DB2 Version 4.

Craig S. Mullins is a member
of the Technical Advisory Group
at PLATINUM technology, inc.
He has more than seven years of
experience in all facets of data
base systems development, in-
cluding developing and teaching
DB2 classes, systems analysis
and design, data base and sys-
tem administration and data
analysis.

Was this article of value to you?

If so, please let us know by
circling Reader Service No. 34.

Would You Like To Be Published in

All the readers of the IDUG Solutions Journal have valuable experiences
they can share within the pages of our magazine.

If you are interested in submitting an article, please mail to:
Lisa Ryan, Managing Editor
IDUG Solutions Journal
19380 Emerald Drive
Brookfield, W| 53045-3617

Send a copy of the article along with a 5.25" or 3.5" diskette in either ASCII or WordPerfect 5.1 format. All of our
articles go through a review process by our technical reviewers so please allow several weeks for our reply.

Deadlines are four months prior to the targeted issue.

IDUG Solutions Journal * April 1995

