
SYSTEM
STRATEGIES

TECHNICAL SUPPORT JULY 1996

In order to optimize queries accurately,
sufficient information must be available
o determine which data access techniques
are most effective (for example, table
and column cardinality, organization
information, and index availability). In a
distributed, client/server environment, data
location becomes a major factor. This article
will discuss how adding location considera-
tions to the optimization process increases
complexity.

COMPONENTS OF DISTRIBUTED
QUERY OPTIMIZATION

There are three components of distributed
query optimization:

■ Access Method— In most RDBMS
products, tables can be accessed in one
of two ways: by completely scanning
the entire table or by using an index.
The best access method to use will
always depend upon the circumstances.
For example, if 90 percent of the rows
in the table are going to be accessed,
you would not want to use an index.
Scanning all of the rows would actually
reduce I/O and overall cost. Whereas,
when scanning 10 percent of the total
rows, an index will usually provide more
efficient access. Of course, some products
provide additional access methods, such
as hashing. Table scans and indexed

access, however, can be found in all
of the "Big Six" RDBMS products
(i.e., DB2, Sybase, Oracle, Informix,
Ingres, and Microsoft).

■ Join Criteria — If more than one table
is accessed, the manner in which they
are to be joined together must be deter-
mined. Usually the DBMS will provide
several different methods of joining
tables. For example, DB2 provides three
different join methods: merge scan join,
nested loop join, and hybrid join. The
optimizer must consider factors such as
the order in which to join the tables and
the number of qualifying rows for each
join when calculating an optimal access
path. In a distributed environment, which
site to begin with in joining the tables
is also a consideration.

■ Transmission Costs— If data from
multiple sites must be joined to satisfy
a single query, then the cost of transmit-
ting the results from intermediate steps
needs to be factored into the equation.
At times, it may be more cost effective
simply to ship entire tables across the
network to enable processing to occur
at a single site, thereby reducing overall
transmission costs. This component
of query optimization is an issue only
in a distributed environment.

BY CRAIG S. MULLINS

Distributed Query
Optimization

Query optimization
is a difficult task in
a distributed client/server
environment and data
location becomes a major
factor. Understanding the
issues involved enables
programmers to develop
efficient distributed
optimization choices.

D
atabase queries have become increasingly complex in the age of

the distributed DBMS (DDBMS). This poses a difficulty for the

programmer but also for the DDBMS. Query optimization is a

difficult enough task in a non-distributed environment. Anyone

who has tried to study and understand a cost-based query optimizer for

a relational DBMS (such as DB2 or Sybase SQL Server) can readily attest to

this fact. When adding distributed data into the mix, query optimization

becomes even more complicated.

SYSTEM STRATEGIES

TECHNICAL SUPPORT JULY 1996

SYSTEMATIC VS. PROGRAMMATIC OPTIMIZATION
There are two manners in which query optimization can occur: sys-

tematically or programmatically. Systematic optimization occurs when
the RDBMS contains optimization algorithms that can be used inter-
nally to optimize each query.

Although systematic optimization is desirable, the optimizer is not
always robust enough to be able to determine how best to join tables at
disparate sites. Indeed, quite often the RDBMS does not even permit a
distributed request joining multiple tables in a single SQL statement.

In the absence of systematic optimization, the programmer can opti-
mize each request by coding the actual algorithms for selecting and
joining between sites into each application program. This is referred to
as progra m m atic optimization. With systematic optimization the RDBMS
does all of the work.

Fa c t o rs to consider when coding optimization logic into yo u r
ap p l i c ation programs incl u d e :

■ the size of the tables;
■ the location of the tables;
■ the availability of indexes;
■ the need for procedural logic to support complex requests

that can't be coded using SQL alone;
■ the availability of denormalized structures

(fragments, replicas, snapshots); and
■ consider using common, reusable routines

for each distinct request, simplifying
maintenance and modification.

AN OPTIMIZATION EXAMPLE
In order to understand distributed query optimization more fully,

let's take a look at an example of a query accessing tables in multiple
locations. Consider the ramifications of coding a program to simply
retrieve a list of all teachers who have taught physics to seniors.
Furthermore, assume that the COURSE table and the ENROLLMENT
table exist at Site 1; the STUDENT table exists at Site 2.

If either all of the tables existed at a single site, or the DBMS sup-
ported distributed multi-site requests, the SQL shown in Figure 1
would satisfy the requirements. However, if the DMBS can not per-
form (or optimize) distributed multi-site requests, programmatic opti-
mization must be performed. There are at least six different ways to go
about optimizing this three-table join.

Option 1: Start with Site 1 and join COURSE and ENROLLMENT,
selecting only physics courses. For each qualifying row, move it to Site
2 to be joined with STUDENT to see if any are seniors.

Option 2: Start with Site 1 and join COURSE and ENROLLMENT,
selecting only physics courses, and move the entire result set to Site 2
to be joined with STUDENT, checking for senior students only.

Option 3: Start with Site 2 and select only seniors from STUDENT.
For each of these examine the join of COURSE and ENROLLMENT
at Site 1 for physics classes.

Option 4: Start with Site 2 and select only seniors from STUDENT at
Site 2, and move the entire result set to Site 1 to be joined with
COURSE and ENROLLMENT, checking for physics classes only.

Option 5: Move the COURSE and ENROLLMENT tables to Site 2
and proceed with a local three-table join.

Option 6: Move the STUDENT to Site 1 and proceed with a local
three-table join.

Wh i ch of these six options will perfo rm the best? Unfo rt u n at e ly, t h e
o n ly correct answer is "It depends." The optimal choice will depend upon:

■ the size of the tables;
■ the size of the result sets — that is, the number of qualifying rows

and their length in bytes; and
■ the efficiency of the network.

Try different combinations at your site to optimize distributed
q u e ries. But re m e m b e r, n e t wo rk tra ffic is usually the cause of most
p e rformance problems in a distributed environment. So devoting most
of your energy to options involving the least amount of netwo rk traffic is
a wise approach. In addition, bad design can also be the cause of many
d i s t ri buted perfo rmance pro bl e m s .

NOT QUITE SO SIMPLE
The previous example is necessari ly simplistic in order to demonstrat e

the inherent complexity of optimizing distributed queries. By adding
more sites and/or more tables to the mix, the difficulty of optimization
will increase because the number of options available increases.

Additionally, the specific query used is also quite simple. Instead of
a simple three table join, the query could be a combination of joins,
subqueries, and unions over more than three tables. The same number
of options is available for any combination of two tables in the query.

Indeed, there are probably more options than those covered in this
article. Consider a scenario similar to the one posed above in which we
have three tables being joined over two sites. Tables A and B exist at
Site 1 and Table C exists at Site 2. It is quite possible that it would be
more efficient to process A at Site 1 and ship the results to Site 2. At
site 2, the results would be joined to Table C. Those results would then
be shipped back to Site 1 to be joined to Table B. It is not probable that
this scenario would produce a more optimal strategy than the six out-
lined above, but in certain situation, it is possible.

Furthermore, some types of processing require procedural logic
(such as looping and conditional if-then processing) to be interspersed
with multiple SQL queries to produce a result. In these cases, the pro-
cedural logic should be factored into the optimization equation for
optimal results. Howeve r, the optimize rs ava i l able in the major
RDBMS products don't do a good job of this for non-distributed
queries, so the hope of a distributed optimizer performing this type of
optimization any time soon is not good.

Fi n a l ly, t h e re is a laundry list of other considerations that must be take n
into account that I have skipped for the sake of brev i t y. For ex a m p l e :

■ The security and authorization implication of who can access what
information at which site need to be examined and implemented.

■ In a multi-site environment, it is possible (indeed quite likely over
time) that one of the sites will not be available for any number of rea-
sons (software upgrade, power outage, hardware/software failure, etc.).

■ Declarative referential integrity among multiple sites, in which the
data relationships are specified in each table's DDL, are not available

Figure 1: SQL to Satisfy Single Site or Multi-Site Requests

SELECT C.TEACHER
FROM COURSE C,

ENROLLMENT E,
STUDENT S

WHERE C.COURSE_NO=E.COURSE_NO
AND E.STUDENT_NO=S.STUDENT_NO
AND S.STUDENT_LEVEL="SENIOR"
AND C.COURSE_TYPE="PHYSICS"

SYSTEM STRATEGIES

in any DDBMS to date. The specification of
these relationships would greatly assist appli-
cation development efforts, as well as distrib-
uted query optimization.

■ Distributed structures can be implemented
to augment performance. A multi-site, multi-
table index structure could be created that
would contain information on the physical
location of tables, as well as the physical
location of the data items within that table.
This stru c t u re, h owever helpful from
a performance perspective, would be difficult
to maintain and administer due to its reliance
on multiple sites.

■ The optimization process will be highly
dependent upon the implementation and usage
of the network. The amount of network traffic
can vary from day-to-day, and even hour-to-
h o u r, t h e reby impacting the optimizat i o n
choice. Whenever the network is modified in
any way (tuned, new release, additional nodes
added, etc.), the optimization choice should
be re-addressed as a new, more optimal path
m ay now be ava i l abl e. This can quick ly
become a drain on the resources of the system
(and the personnel administering the system).

SYNOPSIS
Introducing data distribution into the query

optimization process makes a complex issue
that much more complex. Until the distributed

DBMS products support the systematic opti-
m i z ation of distri buted mu l t i - t able SQL
requests, programmatic optimization will be a
fact of distri buted life. Understanding the
issues involved will enable application pro-
grammers to develop efficient distributed opti-
mization choices.

Craig S. Mullins is a senior technical advisor
and team leader of the Technical Communications
group at PLATINUM t e c h n o l o g y, inc. C r a i g ’s book,
DB2 Developers Guide, contains more than 1,200
pages of tips and guidelines for DB2 and can
be ordered directly from the publisher, SAMS
Publishing, at 1-800-428-5331. Craig can be
reached via the Internet (mullins@platinum.com),
CompuServe (70410,237), America Online
(CraMullins), or at PLATINUM technology, inc.
(800-442-6861, fax: 708-691-0709).

©1996 Technical Enterprises, Inc. Reprinted
with permission of Te chnical Support m ag -
azine. For subscription information, email
mbrship@naspa.net or call 414-768-8000,
Ext. 116.

ts

TECHNICAL SUPPORT JULY 1996

Until the distributed
DBMS products support

the systematic
optimization of distributed
multi-table SQL requests,
programmatic optimization

will be a fact
of distributed life.

