
www.idug.org 37

Simplification is an imperative in this day and age of increas-
ing complexity and ever-changing software environments. A key
component of simplification, in my opinion, is to remember the
basics and apply some simple rules and practices to our DB2 sub-
systems and applications. Indeed, many troubles surface because
we don’t keep track of things we already know.

This principle is backed up in the recent best-selling book,
Blink: The Power of Thinking Without Thinking by Malcolm Glad-
well (published by Little, Brown, 2005, ISBN: 0316172324).
Through the use of case studies and examples Gladwell introduces
us to the power of our “adaptive unconscious” – a powerful innate
ability that provides us with instant and sophisticated information.
Basically, it boils down to using our experience to arrive at quick
decisions that are usually correct. As I read this book I pondered
how its nuggets of wisdom could be adapted to how we manage
DB2 systems.

So, what are the basics that we should always keep in mind? Let’s
examine some of the primary issues and concepts that need to be
addressed in order to keep a DB2 implementation humming along.

Updating Statistics
Simple negligence is a common cause of performance prob-

lems in many DB2 subsystems. DB2 needs to have accurate data-
base object statistics in order to create efficient strategies for data
access. Indeed, at IDUG in Prague last year an IBM speaker said,
“Of customer problems with ‘bad’ access paths, around half of
them were because of bad or missing statistics.” That is quite a
telling indication of the reason many performance problems occur.
Put quite simply—it is our fault.

To avoid such problems make sure you run a RUNSTATS
utility on a regular basis. As the volume and nature of data in your
databases changes, DB2 must be made aware of the changes or
performance will suffer. The RUNSTATS utility collects statistical
information for DB2 tables, tablespaces, partitions, indexes and
columns. When it populates this information into the DB2 Cata-
log the statistics are available for subsequent use by the DB2 opti-
mizer in formulating efficient access paths. Of course, the statistics
in these tables also can be used by DBAs to help determine when
to reorganize. Without up-to-date statistics, both DB2 and the
DBAs managing DB2 are at a disadvantage.

So just how frequently should RUNSTATS be run? Of
course, the answer is “it depends.” But here is what it depends

upon: how frequently the data changes, how large the object is,
and the data access activity. The cost of RUNSTATS usually is
negligible for small- to medium-size table spaces. Of course, RUN-
STATS will take longer to execute for larger objects, so plan wise-
ly before executing RUNSTATS for very large tablespaces and
indexes. You cannot avoid running RUNSTATS for larger objects
because the statistics are perhaps even more important the larger
the object becomes. If the data in a large object changes slowly you
can probably run RUNSTATS once, and then delay running it
again for a long time (until the data changes significantly). But for
very volatile data, be sure to execute the RUNSTATS utility at
least monthly. You should consider sampling to reduce the run-
time duration for larger objects.

You can run RUNSTATS with SHRLEVEL CHANGE to
accumulate statistics without limiting concurrent activity to an
object. Of course, the statistics will be more accurate if SHRLEV-
EL REFERENCE is used, but in today’s 24/7 world such a luxu-
ry is not usually possible. At any rate, it is wise to run RUNSTATS
during periods of low activity to reduce the impact of the concur-
rent access to both the applications and the statistics gathering
process.

After running RUNSTATS the newly updated statistics are
available for use. Of course, if you do not REBIND your applica-
tions your access paths for static SQL will not change. Dynamic
SQL can take advantage of the new statistics immediately. And
you can examine the new statistics to determine whether your
objects need to be reorganized. This is the next “simple thing” you
need to keep under control.

Reorganizing When Necessary
Now that the statistics are correct we can use them to sched-

ule reorganizations of our database objects. Reorganization is
required periodically to ensure that the data is situated in an opti-
mal fashion for subsequent access. Reorganization reclusters data,
resets free space to the amount specified in the DDL, and deletes
and redefines the underlying VSAM datasets (for STOGROUP-
defined objects). There are three types of reorganizations support-
ed by the DB2 REORG utility:

• When REORG is run on an index, DB2 reorganizes the
index space to improve access performance and reclaim frag-
mented space.

BY CRAIG S. MULLINS

T h e B u f f e r P o o l

Do the Simple Things First

www.idug.org38

• When REORG is run on a regular (non-LOB) tablespace,
DB2 reorganizes the data into clustering sequence by the
clustering index, reclaims fragmented space, and optimizes
the organization of the data in the tablespace.

• When REORG is run on a LOB tablespace, DB2 removes
embedded free space and tries to make LOB pages contigu-
ous. The primary benefit of reorganizing a LOB tablespace
is to enhance prefetch effectiveness.

Proper planning and scheduling of a REORG utility requires
an examination of the statistics in the DB2 Catalog and an under-
standing of how the object is being used. You can follow some gen-
eral rules of thumb to help guide your reorganization planning.

DB2 provides numerous statistics that are useful in determin-
ing when to reorganize. These include PERCDROP, PAGESAVE,
NEAROFFPOSF, FAROFFPOSF, NEARINDREF, FARINDREF,
LEAFDIST, and CLUSTERRATIOF. Although an in-depth dis-
cussion of each of these statistics is beyond the scope of this article,
the next couple of paragraphs will outline some basic tactics for
determining when to REORG.

One rule of thumb for smaller indexes is to reorganize when
the number of levels is greater than three. For indexes on larger
tables, three (or more) levels may be completely normal. Other
indicators that signify that an index reorganization may be needed
include when the LEAFDIST value is large or
PSEUDO_DEL_ENTRIES has grown.

The cost of reorganizing an index is small compared to the
cost of reorganizing a tablespace. Sometimes, simply executing
REORG INDEX on a tablespace’s indexes can enhance system
performance. Reorganizing an index will not impact clustering,
but it can do the following:

• Possibly impact the number of index levels.
• Reorganize and optimize the index page layout, removing

inefficiencies introduced due to page splits.
• Reset the LEAFDIST value to 0 (or close to 0).
• Reset PSEUDO_DEL_ENTRIES to 0.
• Reduce or eliminate data set extents.
• Apply any new PRIQTY, SECQTY, or STOGROUP

assignments.
• Reset free space.

Additionally, reorganizing indexes using SHRLEVEL
CHANGE is simpler than reorganizing tablespaces online because
REORG INDEX SHRLEVEL CHANGE does not use a mapping
table. This makes reorganizing indexes with concurrent data access
easier to administer and maintain.

Consider reorganizing tablespaces when CLUSTER RATIO
drops below 95 percent for its clustering index or when
FARINDREF is large. Reorganizing a large tablespace as soon as
the CLUSTER RATIO is not 100 percent could produce signifi-
cant performance gains.

Also, if you have enabled Real Time Stats (RTS), be sure to
examine the columns of SYSIBM.TABLESPACESTATS and
SYSIBM.INDEXSPACESTATS that provide information on
REORG, REBUILD and RUNSTATS. The RTS tables can help
you to determine when to run a REORG by examining the last
time a utility was run and what has happened since. Of course,
RTS does not obviate the need to run RUNSTATS.

When you run a tablespace REORG consider running an
inline RUNSTATS. Doing so will cause DB2 to gather new statis-

tics during the reorganization process. It is more efficient than
running a separate RUNSTATS after the REORG – and you’ll
want updated statistics after reorganizing. To generate inline
RUNSTATS, use the STATISTICS keyword.

Remember, when scheduling your REORG jobs to take into
account the level of concurrent activity to be allowed during the
reorganization. There are three SHRLEVEL options for REORG:
NONE, REFERENCE and CHANGE. Allowing concurrent
access during the reorganization requires a shadow copy of the
tablespace and requires additional administrative effort – but it
will not disrupt production work. Of course, consider running
online REORGs only within reason – you do not want to run an
online REORG during the busiest portion of the workday.

Coding Appropriately
Another pervasive problem permeating DB2 systems is the

“flat file” development mentality. What I mean by this is when a
programmer tries to access DB2 data the same way that he would
access data from a flat file. DB2 is “relational” in nature and, as
such, operates on data a set at a time, instead of the record at a time
processing used against flat files. In order to do justice to DB2, you
need to change the way you think about accessing data.

To accomplish this, all users of DB2 need at least an overview
education of relational database theory and a moderate to exten-
sive amount of training in SQL. Without such a commitment
your programmers are sure to develop ugly and inefficient data-
base access code—and who can blame them? Programmers are
used to working with files so they are just doing what comes nat-
urally to them.

SQL is designed so that programmers specify what data is
needed but they cannot specify how to retrieve it. SQL is coded
without embedded data-navigational instructions. The DBMS
analyzes SQL and formulates data-navigational instructions
“behind the scenes.” This is foreign to the programmer who has
never accessed data using SQL.

Every SQL manipulation statement operates on a table and
results in another table. All operations native to SQL, therefore,
are performed at a set level. One retrieval statement can return
multiple rows; one modification statement can modify multiple
rows. This feature of relational databases is called relational
closure.

When accessing data, a programmer needs to think about
what the end result should be and then code everything possible
into the SQL. This means using the native features of SQL—joins
and subselects and functions, etc.—instead of coding procedural
COBOL or Java and processing tables like files.

Educating programmers how to use SQL properly is probably
the single most important thing you can do to optimize perform-
ance of your DB2 applications.

Building the Correct Indexes
The final “simple thing” we will discuss in this article is build-

ing proper indexes. This is a job for the DBA and the proper way
to do it is by workload, not by database object. What do I mean
by that?

Most of the time, when we build new databases we create
groups of objects. We’ll create a database, then groups of table-
spaces and tables. Every time we create a new table we usually cre-
ate the indexes on that table. This approach is not the best.

Instead, we should build indexes based on workload. Indexes
should support the predicates in the SQL that is written to access

www.idug.org 39

your tables. Building indexes to support predicates of the most fre-
quently executed queries and most important queries should be
your first indexing step after building the unique indexes required
to support primary keys and unique constraints.

Of course, this requires knowledge of how your tables will be
accessed. And when you are first creating tables, you will not have
any SQL. Sometimes you may have vague pseudo-code descrip-
tions of potential queries, but you won’t have an accurate picture
of access. Therefore, indexing has to be an incremental task, per-
formed on an ongoing basis as code is written against your data-
bases.

As you continually monitor and build new indexes, be sure to
review the old ones that were created. Remember, although index-
es can improve SELECT access, they will degrade the performance
of INSERTs and DELETEs (as well as any UPDATEs of indexed
columns). So, be sure to drop those unused indexes.

You should also take care to learn your applications and the
type of indexes that can best serve them. Of course, this coverage
of indexing techniques has been necessarily high-level. Skillful,
performance-oriented indexing is a skill that can take time to mas-
ter. So, maybe I was a bit rash in calling it a “simple” thing.

Summary
Be aware that this article has offered a simplified list of things

to focus on—but that is the point. Yes, DB2 management is a com-
plex, arduous task. But by paying attention to the basics and mak-
ing sure you do not take shortcuts around necessary processes, the
complex things can be addressed more easily—because you can be
sure that the simple things have been handled appropriately.

Yes, I know, there always seems to be “time to do it over, but
never time to do it right.” By paying attention to the details and
making sure that the small things don’t become big problems, the
time needed to “do it over” should diminish. And then you’ll be
able to spend more time on the “big” issues when they inevitably
arise.

Craig S. Mullins is president and principal consultant with
Mullins Consulting, Inc. Craig is an IBM Gold Consultant, the
author of two books, DB2 Developer’s Guide and Database
Administration: Practices and Procedures, and can be reached via
his Web site at www.CraigSMullins.com.

ABOUT THE AUTHOR

Index to Advertisers
BMC Software, Inc. IBC

CopperEye . IFC

Embarcadero. 7

HLS Technologies 5

IBM. 3

IDUG Euope 2005 40

Relational Architects International . . 1

Responsive Systems BC

