THE FUTURE
OF DB2
SEGURITY: ».

By Craig S. Mullins

art [of this two-part series (July 1992) highlight-

ed the extensions to DB2 security provided by

IBM in the latest release of DB2 (V2R3). It also
presented two specific problem areas and solutions sur-
rounding the current implementation of DB2 security.
The following section continues to outline problems that
still exist with DB2 security. In addition, a solution is pro-
posed for each problem that is addressed. I have made
every effort to conform to the specifications of RMV2
when formulating these proposed solutions.

Problem #3: No Means of Canceling DB2 Threads

Qutside of bringing down DB2, the only way to cancel
a DB2 thread is to cancel the allied agent job that initiat-
ed the thread. This is not always possible or the best solu-
tion.

S_olutiopﬁ: Provide a Means To Tgﬂjinate 'Ehreads

DB2 should provide the ability to terminate threads in
much the same way that it can terminate utilities. This
would enable authorized users to react more quickly to
potentially problematic situations, canceling offending
programs by terminating their thread. It also places the
controls for access to the data base via application pro-
grams more firmly under the control of the DBMS.

The syntax of the command should per-
mit single threads to be canceled in one of
two methods. The first method,
MODE(ABORT), should unconditionally
cancel the thread and roll back all update
activity to the last COMMIT point. The
second method, MODE(COMMIT), should
delay the termination of the thread until the
next COMMIT statement is issued by the
thread.

A hierarchy of thread termination should
exist such that subsequent termination of

the same thread using MODE(ABORT) will override
prior MODE(COMMIT) terminations. This will enable a
user to immediately terminate a thread after waiting what
may be deemed too long for the next commit point within
a program. This is particularly important for TSO threads,
which can sometimes get swapped out for an inordinate
amount of time (due to a downgrade in the TSO perfor-
mance classes).

Figure 1 is the proposed syntax of the terminate thread
command.

The connection name is generally the name of the plan
associated with the thread to be terminated. The corrid,
or correlation identifier, is either the user ID or the job-
name associated with the thread to be terminated. If the
combination of connection name and corrid is not
unique, then all threads associated with that combination
of connection name and correlation 1D should be termi-
nated as directed by the -TERM THREAD command.

An additional system privilege will be needed to con-
trol who can terminate threads. The proposed syntax
follows:

GRANT TERMTHRD TO authid
— PUBLIC—

TERMTHRD authority should be included as a compo-

nent of the SYSOPR group level authority.

[WITH GRANT OPTION]

Problem #4: Complexity of Security Implementation

Often times the DB2 security administrator will get
requests asking for the security of one user to be duplicat-
ed for another user. An example of this type of request is
when a new programmer is added to a project and needs
the same privileges as the other programmers on that pro-
ject. To satisty this type of security request, the adminis-
trator must utilize one of three methods:!

v analyze the DB2 catalog to determine what security is
in place and replicate the DCL needed to grant the
proper security;

v maintain PDS members containing the security needed
for each project, and maintain these PDS members as
the security needs of the applications change; and

Figure 1: Proposed Syntax of the Terminate Thread Command

-TERM THREAD (connection-name) CORRID (corrid) MODE(—— ABORT ——)

— C(OMMIT

Figure 2: Example of the GRANT LIKE Statement
GRANT TABLE SECURITY LIKE source table name T0 target table name

and

GRANT USER SECURITY LIKE source authid TO target authid

DATA BASE MANAGEMENT/ AUGUST 1992 33

v use a vendor tool (if available)
specifically written to accomplish
this task.

Also, requests may be received that
ask for the security of one table to be
used as a model for the security of a
new table. For example:

A new table is being added to the
billing system that contains billing
history information. The same users
that access normal billing information
also need to access the billing history
information. Therefore, the security
from the table containing the normal
billing information needs to be cloned
for the history table.

Solution #4: Simplify Security With
Powerful Security Cloning
Statements

Security administrators should have
the power to issue statements allowing
GRANT LIKE and REVOKE every-
thing statements. The statements
need to be powerful enough to work
for both user 1Ds and tables.

The GRANT LIKE statement
would specify a source and a target
user ID. All security implemented for
the source ID would be cloned for the
target ID. See Figure 2.

Note that the source and target
rable names (or authids) should never
be allowed to be identical.

Additionally, the REVOKE every-
thing statement should be added. This
statement will allow a security admin-
istrator to remove all privileges from
an authid or table. This will be partic-
ularly useful for:

v removing the security from a user
when s/he moves from department to
department or out of the company;

v moving a table from one environ-
ment to another where the same
security will be needed (e.g., copy-
ing the table from one production
DB2 subsystem to another).
Proposed syntax:

REVOKE TABLE SECURITY FROM toble nome

and

REVOKE USER SECURITY FROM authid

Both the GRANT LIKE and
REVOKE everything statements
should only be authorized for person-

34 DATA BASE MANAGEMENT/ AUGUST 1992

nel granted SYSADM
or SYSCTRL privileges.

Figure 3: Cascading Reygkes

User! grants authority to User2.

Problem #5: Complex
Administration Due to
Cascading Revokes

Anyone
remotely familiar with
DB2’s security features
knows all about the hor-
rors of

even

cascading
The DB2

l'L‘\’Ul(L‘ statement is used

revokes.

to remove privileges
from a user. A cascading
revoke is an implicit,
“behind the scenes”
revocation of security.
In other words, revok-
ing an authorization from user 1 also
causes user 2 to lose her/his authority.
See Figure 3 for an example of cas-
cading revokes.

Cascading revokes can cause major
headaches for DB2 security adminis-
trators. How can a cascading revoke
cause problems? Well, let's take a
quick look at the overall situation.
The WITH GRANT OPTION
clause of the GRANT statement
enables users to grant privileges to
other users enabling them to also
grant the privileges. This can build
into a large hierarchy of security
where users pass on privileges from
one to another.

Consider the example shown in
Figure 4. Say Bob represents a
SYSADM, responsible for granting
all security within your DB2 subsys-
tem. Assume that he distributes his
security administration responsibili-
ties by granting privileges WITH
GRANT OPTION to people in each
department (e.g., Ron and Dianne)
who grant privileges and further dele-
gate security administration roles.
Quickly a very large hierarchy of
security administration responsibility
has been built, such as the one in
Figure 4.

Then Bob quits. How do we
remove him from the system? If we
simply revoke his SYSADM authori-
ty, then everything that he granted
will also be eliminated because of cas-

USERT —grant—-> USER2

User?2 grants authority fo user3, who in turn grants authority fo userd.
USER2 —grant—> USER3 —grant—-> USER4

User1 revokes user2's authority.
USER] <—revoke— USER?

This causes user3's authority to be revoked because user] no longer has

the privilege to grant to others. This is a cascading revoke. The same fate
befalls userd, because user3 will no longer have the authority either.

USER? <—cascade— USER3 <—coscade— USER4

cading revokes. The only way to safe-
ly remove Bob from the system is to
do a complete analysis of the DB2
catalog security tables (listed in Figure
5) before revoking his SYSADM priv-
ilege. After revoking this privilege, we
must piece together the information
from the DB2 catalog, regrant all
authority removed by the cascading
revokes, cross our fingers and hope we
didn’t miss anything.

This is an unacceptable means of
controlling DB2 security. Admittedly,
there are several products from DB2
add-on tool vendors that address and
control these problems, but optimally,
IBM should rectify this inadequate
DB2 security mechanism.

Solution #5: Provide Security
Integrity Features

IBM should implement Security
Integrity for DB2 and model it in
much the same fashion as Referential
Integrity (RI). Each revoke statement
should have a mandatory revoke rule
attached to it. The revoke rule will
tell the DBMS what action to take
for the dependent privileges in the
DB2 catalog when any given privi-
lege is revoked.

For those familiar with DB2’s
Referential Integrity delete rule, the
revoke rule will be similar. There
should be three revoke rules, one of
which must be selected for each
revoke requested. These are:

v CASCADE;
v RESTRICT; and
v SET AUTHID.

The CASCADE option will act
exactly like the current DB2 revoke
statement, and therefore should be
the default if no rule is explicitly
specified. Refer again to Figure 3 for
an explanation of how the CAS-
CADE option will function.

The RESTRICT option, on the
other hand, will prohibit any revoke
from occurring that would cause a
cascading revoke. This will effectively
restrict the revocation of security
“behind the scenes.”

Finally, the SET AUTHID revoke
rule will permit the revoke to occur,
but will not cause any cascading
revokes. The revoke will occur, but
instead of cascading any dependent
privileges, the GRANTOR column
in any row of a DB2 catalog table
that would have been deleted due to
cascading revoke will be set to the
authorization 1D of the user issuing
the revoke. So, using the example in
Figure 3, if SET AUTHID was speci-
fied, USERI1 revokes from USER2,
but USER3 keeps her/his authority,
with the DB2 catalog being updated
to indicate that USERI granted the
authority, instead of USER2. The
security for USER4 will be complete-
ly unaffected.

Using the SET AUTHID rule
leaves the security structure intact
except for the specific authorization
being explicitly revoked. This is often

Figure 5: DB2 Catalog Security Tables

Figure 4: Example of Hierarchic Security

Bob

//\

Ron

Chris
Bill Jeft

/]\ Monica

=
=
=

LT T R

necessary when a DBADM or
SYSADM (or anyone having the
WITH GRANT OPTION for that
matter) moves on. It is customary to
remove the specific authid of the per-
son no longer with the company, but
to retain her/his work. The current
method for accomplishing this is to
analyze the DB2 catalog, rebuild all
grant statements in the hierarchy
before revoking, revoke the privi-
lege(s) and reapply the grants. This is
senseless. The solution presented in
this section will eliminate the require-
ment for this difhicult maneuvering.

Further, | think that this is a fea-
ture that should not only be added to
DB2, but to the relational model as
well.

Problem #6: Non-Recoverable Data
Due to Cascading Drops

DB?2 is great at providing a level of
abstraction between its data base

Toble Description of the Table
SYSCOLAUTH Confains the UPDATE privileges held by DB2 users on specific table or view columns.
SYSDBAUTH Contains data bose privileges held by DB2 users.
SYSPACKAUTH Confains package privileges held by DB2 users.
SYSPKSYSTEM Contains the systems enabled (CICS, IMS, baich, efc.) for DB2 packages.
SYSPLANAUTH Contains plan privileges held by DB2 users.
SYSPLSYSTEM Contains the systems (CICS, IMS, batch, etc.) enabled for DB2 plans.
SYSRESAUTH Contains resource privileges held by DB2 users.
SYSTABAUTH Contains table privileges held by DB2 users.
SYSUSERAUTH Contains system privileges held by DB2 users.

Dianne
MMike

Dale Carl

A, Ay

objects and the physical implementa-
tion of those objects. For example,
when a tablespace is created using
storage groups, DB2 will automatical-
ly allocate the underlying VSAM
liner data set for that tablespace.
Conversely, when a storage group
defined tablespace is dropped, DB2
will automatically delete the underly-
ing data set. This is good because it
eliminates the tedious job of using
IDCAMS to define and delete
VSAM data sets for DB2Z objects.
However, once a tablespace is
dropped, all of the data is gone. If the
tablespace was dropped by mistake,
there is no mechanism for reactivat-
ing it.

Solution #6: Provide Delayed
Dropping and Reactivation

According to the relational model,
a mechanism should exist to delay
the deletion of data when a data base
object is dropped. Upon execution of
the DROP TABLESPACE state-
ment, a grace period for deleting the
underlying data set(s) should be per-
mitted. This grace period should be
specified as a duration in terms of cal-
endar days, and should be explicitly
stated in the CREATE TABLE
SPACE DDL.

It also may be prudent to imple-
ment something of this nature for the
DROP TABLE statement. This
would allow the archival of table data
for a specified number of days when
the DROP TABLE statement is
issued. DROP TABLE does not

delete data sets, but it does make the

DATA BASE MANAGEMENT/ AUGUST 1992 35

data inaccessible to data base users.

A command to reactivate data in
dropped objects should also exist.
This command should re-establish
the dropped object, thereby allowing
the data in the data sets (which were
retained for a specified number of
days) to be accessible.

The actual implementation of this
capability is complex and far-reach-
ing. The implementation of such fea-
tures will alter the manner in which
DB2 stores and accesses data. For
example, DB2 will need to be aug-
mented with the following abilities:
v The ability to distinguish between

active data for available DB2

objects and inactive data for
dropped DB2 objects. This can be
accomplished via an additional
column in the DB2 catalog table

SYSIBM.SYSTABLES; for exam-

ple, ACTIVE with Y indicating an

active table and N indicating an
inactive table.

v If inactive data exists for a dropped
table, the creation of a table with
the same name should not be
allowed unless the data is either
reactivated for that table or delet-
ed. This can be accomplished by
extending the CREATE TABLE
syntax to include a clause specify-
ing either DROP DATA to delete
the retained data or RETAIN
DATA to reactivate the data for
the new table.

v All DB2 catalog entries should be
retained until the data is dropped.
This will enable the table (and all
related DB2 objects) to be easily
recreated.

Finally, a REACTIVATE state-
ment should be provided that
requires only the object name; for
example, REACTIVATE TABLE
SPACE tsname or REACTIVATE
TABLE creator.tbname. This would
enable tablespaces and tables to be
reactivated without issuing full DDL.

Synopsis

DB2 V2.3 adds new and needed
security features to DB2’s arsenal of
authorization tools, yet there is still a
long way to go. The six problems

36 DATA BASE MANAGEMENT/ AUGUST 1992

addressed in these articles need to be
corrected for a proper and user-
friendly security architecture to be
available within DB2. The solutions
presented here, if implemented by
IBM, will go a long way toward
achieving this goal.

Footnote

LIf your organization has implemented secondary
authorization routines, then this type of request is
easier. However, secondary authorization routmes
require an exit to an external security package or
table of secondary awthids. Although most organi-
zations use secondary authids, there are still a fair
number of organizations that do not.

Craig S. Mullins is the
author of the recently
released DB2 Developer's
Guide published by
Prentice-Hall Computer

Publishing.

Was this article of value to you? If so,
please let us know by circling Reader
Service No. 39.

Boost Gomp

etitiveness

With Software Change
and Configuration Management

By Tom Burton

usiness changes affect organi-
zations that produce, revise
and maintain software appli-
cations. Buffeted by the volume and
complexity of software changes, soft-
ware developers must balance quali-
ty, requirements and deadlines. It is
no wonder then that obstacles seem
insurmountable at times.

What is needed is a way to auto-
mate software changes to minimize
disruption and to ensure quality.
Fortunately, controlling software
changes is feasible and well worth
the effort. The solution is software
configuration management (SCM).

What Is Software Configuration
Management?

If you ask 10 people this question,
you may get 10 different answers.
Theoretically, SCM is defined as the
process of identifying, organizing and
managing modifications to software.

However, like other computer terms,
the definition today is not the same
as it was a few years ago.

SCM began in the 1970s. As orga-
nizations wrote larger applications
and used third-generation languages
(3GLs), the need for managing
changes to software source code
increased. Solutions involved change
control and library management.
Products to support these activities
were introduced. Many of these
products—like SCCS, CMS, CA-
PANVALET and The CA-LIBRAR-
IAN—are still used today.

As software inventories grew in
the 80s, the volume of software
changes rose, requiring the software
development and maintenance life
cycle to be controlled from design to
production. Audit requirements also
emerged to control and manage
changes.

SCM solutions took the form of

