
www.idug.org28

T h e B u f f e r P o o l

Change Control for DB2
Access Paths
BY CRAIG S. MULLINS

An important aspect of efficient DB2 operation is the ongoing
analysis and management of DB2 access path changes. Whether
you are implementing changes into your DB2 applications, up-
grading to a new version of DB2, or simply trying to achieve opti-
mum performance for existing application plan and packages, an
exhaustive and thorough BIND management process is a neces-
sity.

However, many organizations are not doing everything pos-
sible to keep access paths up-to-date with the current state of their
data. There are several reasons why the acknowledged “best prac-
tice” of REOG/RUNSTATS/REBIND is not followed religiously.
In this month’s column, I will examine some of the issues involved
in managing access path changes. Furthermore, we’ll look at some
methods for introducing a better change control discipline for the
DB2 access path generation process.

SOME HISTORY
On the mainframe, change has traditionally been strictly con-

trolled. But one exception has been DB2 access paths.
Think about it. In a mainframe shop, everything we do is tight-

ly controlled. If we make even a minor change to an application
program, that program is thoroughly tested before it ever reaches
a production environment. The program progresses through unit
testing, QA testing, volume testing, and so on. As developers, we
do a good job of testing a change to minimize the risk that the
change might have unintended consequences. We do the same type
of due diligence with most other changes in the mainframe world.
Database changes are planned and thoroughly tested. System soft-
ware, e.g., CICS, WebSphere, etc., including subsystem and DB2
changes, are all subject to strict change control procedures. This is
done to minimize disruption to the production work being con-
ducted by our business folks.

But there is one exception to this tight change control en-
vironment: Binds and Rebinds are typically done in the produc-
tion environments without the benefit of oversight or prior testing.
This lack of change control results in unpredictable performance
impacts. In most shops, programs are moved to production and
bound there. Indeed, we are at the mercy of the DB2 optimizer,
which generates access paths on the fly when we Bind or Rebind

our programs. Any issues with inefficient access paths are then
dealt with in a reactive mode. That is, problems are addressed after
the fact.

One of the biggest reasons for not implementing strict change
control processes for access paths is the lack of built-in methods for
ensuring access path change control discipline. Let’s face it, manu-
ally evaluating thousands of packages and tens of thousands of
SQL statements can be quite impractical. But there are things that
can be done to help alleviate this problem. This article will address
some of those things.

BIND PARAMETERS
There are many parameters and values that must be chosen

from and specified when you bind a DB2 application program.
The vast array of options at our disposal can render the whole pro-
cess extremely confusing – especially if you don’t bind on a daily
basis. And even if you do, some of the options still might be con-
fusing if you rarely have to change them. You know what I’m talk-
ing about, parameters like ACQUIRE, RELEASE, VALIDATE,
and DEGREE.

It is not the intent of this article to delve into the myriad bind
options and give you advice on which to use when. There are many
articles and books, as well as the IBM DB2 manuals that you can
use to guide you along that path. Suffice it to say, that there are
some standard parameters and values that should be chosen “most
of the time” in certain situations. As such, a wise DBA group will
set up canned routines for the programmers to use for compiling
and binding their applications. Choices such as: “CICS transac-
tion,” “DB2 batch,” or “analytical query” can be presented to the
developer and then, based on which of the various types of pro-
grams and environments that are available, the canned script can
choose the proper bind options. Doing so can greatly diminish the
problems that can be encountered when the “wrong” parameters or
values are chosen at bind time.

This same process can be put in place for production binding
to ensure that the appropriate parameters and values are chosen.
This is especially useful when the binds are not done by a DBA,
but are automated in production or done by a less-experienced
change control clerk.

29www.idug.org

Of course, there should always be a method for overriding the
“standard” values for special situations, although these overrides
should not be available to anyone other than a well-trained indi-
vidual (DBA or otherwise).

I want to make one small exception here regarding advice on
bind parameters, and that is the EXPLAIN parameter. In produc-
tion, always bind your plans and packages specifying EXPLAIN
YES. Failing to do so means that access paths will be generated, but
you will not know what they are. This is akin to blinding yourself
to what DB2 is doing and is not advisable.

APPROACHES TO ACCESS PATH MANAGEMENT
OK, so we know that Bind and Rebind are important compo-

nents in assuring optimal application performance. It is the bind
process that determines exactly how your DB2 data is accessed in
your application programs. As such, it is critically important that
you develop an appropriate strategy for when and how to rebind
your programs.

There are several common approaches taken by DB2 users.
By far, the best approach is to rebind your applications over time
as the data changes. This approach involves some form of regular
maintenance that keeps DB2 statistics up to date and formulates
new access paths as data volumes and patterns change. There will
be more on this later on in this article.

Other approaches include binding only when a new version of
DB2 is installed, or perhaps more ambitious, whenever new PTFs
are applied to DB2. Another approach is to rebind automatically
after a regular period of time, whether it is days, weeks, months, or
whatever period of time you deem significant. This approach can
work if the period of time is wisely chosen based on the application
data – but it still can pose significant administrative issues.

The final approach is from the “if it ain’t broke, don’t fix it”
school of thought. This approach is the worst of the several ap-
proaches discussed here. The biggest problem with this approach
is that you are penalizing every program in your subsystem for fear
that a program or two may have a few degraded access paths. This
results in potentially many programs having sub-optimal perfor-
mance because the optimizer never gets a chance to create better
access paths as the data changes.

Of course, the possibility of degraded performance is real
– and that is why this approach has been adopted at some sites.
The problem is being able to find which statements may be worse.
The ideal situation would be to be able to review the access path
changes before hand to determine if they are better or worse. But
DB2 itself does not provide any systematic method of administer-
ing access paths that way. There are third-party tools that can help
you achieve this, however.

Let’s go back to the best approach again, and that is to perform
regular rebinds as your data changes. This involves what has be-
come known as the “Three Rs.” This means regularly reorganizing
the data to ensure that it is optimally structured. That is followed
by RUNSTATS to be sure that the reorganized state of the data
is reflected in the DB2 Catalog. Finally, we follow that up with
rebinds of the application programs that access the data structures
that have been reorganized and RUNSTATed (if you’ll allow me to
turn that into a verb).

At any rate, your goal should be to keep your access paths up-
to-date with the current state of your data. Failing to do this means
that DB2 is accessing data based upon false assumptions. DB2 is

unlikely to make the same access path choice as your data grows
– and as patterns within the data change.

By rebinding, you can generally improve the overall perfor-
mance of your applications because the access paths will be de-
signed better, based on an accurate view of the data. Additionally,
as DB2 changes are made (via new releases or PTFs) optimizer
improvements, and new access techniques can be incorporated into
the access paths. That is, if you never rebind, not only are you
forgoing better access paths due to data changes but you are also
forgoing better access paths due to changes to DB2 itself.

Of course, adopting the Three R’s approach can pose addi-
tional questions. For example, when should you reorganize? In or-
der to properly determine when a REORG is needed, you’ll have
to look at statistics. This means looking at either RUNSTATS or
Real-Time Statistics (RTS). So, perhaps it should be at least Four
R’s – in other words:

1. RUNSTATS or RTS,
2. REORG,
3. RUNSTATS, and
4. REBIND.

Now it is true that some folks don’t rely on statistics to sched-
ule a REORG. Instead, they just build the JCL to REORG their
database objects when they create the object. So they create a table
space then build the REORG job and schedule it to run monthly,
or quarterly, or on some regular basis. This is better than no RE-
ORG at all, but it is probably not the best approach because you
are most likely either reorganizing too soon (in which case, you
waste the CPU cycles to do the REORG) or you are reorganizing
too late (in which case, performance is suffering for a period of
time before the REORG runs). Better to base your REORGs off of
statistics and thresholds using either RUNSTATS or RTS.

Statistics are the fuel that makes the optimizer function prop-
erly. Without accurate statistics, there is little hope that the optimizer
will formulate the best access path to retrieve your data. If the op-
timizer doesn’t have accurate information on the size, organization,
and particulars of your data then it will be creating access paths based
on either default or inaccurate statistics. Incorrect statistics will prob-
ably cause bad choices to be made – such as choosing a merge-scan
join when a nested loop join would be better, or failure to invoke
sequential prefetch, or using the wrong index – or no index at all.
And the problem of inaccurate statistics is pervasive. There are shops
out there that never, or rarely, run RUNSTATS to gather up-to-date
statistics. Make sure yours is not one of those shops!

When should you run RUNSTATS? One answer is: “As fre-
quently as possible based on how often your data changes.” This
means that you will need to know a thing or two about your data
growth patterns. To properly determine a schedule for statistics you
need to know things about your data: what is its make-up, how is
it used, how fast does it grow, and how often does it change? These
patterns will differ for every table space in your system.

Next we need to decide when to rebind? The best answer for
this is when statistics have changed significantly enough to change
access paths. When we know that data has significantly changed,
it makes sense to rebind after the RUNSTATS completes. But the
trick is determining exactly when we have a “significant” change in
our data. Without an automated method of comparing and con-
trasting statistics (or even better yet, access paths) coming up with
an answer in a manual way can be time-consuming and error-prone
– especially when we get into the thousands of programs.

www.idug.org30

And we always have to be alert for a rogue access path – that
is, when the optimizer formulates a new access path that performs
worse than the previous access path. This can happen for a variety
of reasons. Of course, number one is that the optimizer, though
good, is not perfect. Mistakes can happen. Other factors can cause
degraded access paths, too. The access paths for volatile tables de-
pend on when you run the RUNSTATS. Volatile tables are those
that start out empty, get rows added to them during processing,
and are emptied out at the end of the day. And, of course, if the
catalog or statistics are not accurate we can get problems, too.

So adopting the Three, err, I mean, Four R’s approach implies
that you will have to develop a methodology for reviewing your ac-
cess paths and taking care of any “potential” problem access paths.
This can be a difficult mountain to climb.

Indeed, the Four R’s probably needs to become the Five R’s
because we need to review the access paths after rebinding to make
sure that there are no rogue access paths. So, we start off with a
RUNSTATS (or use RTS) to determine when to REORG. After
reorganizing we should run RUNSTATS again, followed by a RE-
BIND. Then, we need that fifth R – which is to “review” the access
paths generated by the REBIND. As we mentioned, the optimizer
can make mistakes. And, of course, so can you. Users don’t call you
when performance is better (or the same). But if performance gets
worse, you can bet on getting a call from irate users.

So we need to put in place best practices whereby we test bind
results to compare the before and after impact of the optimizer’s
choices.

THE PLAN TABLES
A lot of information is contained in the PLAN_TABLE. After

the optimizer creates the access paths and populates the PLAN_
TABLE with data representing those access paths, we need to ex-
amine the results to determine if everything is OK.

Many questions can be answered by analyzing the results of
EXPLAIN – questions like:

• If we are joining, what type of join is used (NLJ, MS, Hy-
brid)?

• Was an index used, and if so how many columns matched?
• Are we doing a scan, and if so, what type of scan (full or

page range)?
• Is prefetch being used, and if so what type (sequential, list)?
• Was a hint used?
• Was parallelism used, and if so, what degree and type (I/O,

CPU, Sysplex)?
• Was a sort required, and if so, why (Join, Unique, Group

By, Order By)?
• What type of locking is required?

And that just covers the main PLAN_TABLE. The EXPLAIN
option also populates two optional tables, if they exist:

• DSN_STATEMNT_TABLE, which contains DB2’s esti-
mate of the processing cost for an SQL statement, and

8 DSN_FUNCTION_TABLE, which contains information
about function resolution.

Of course, for any of this information to be returned, you have
to have bound specifying EXPLAIN(YES). Any change to any of
these items between rebinds means a change in access path – which
can be positive, or a potential problem. Over time, performance

analysts can determine which changes are good and which might
be problematic – but it takes experience (and perhaps some luck)
to do this correctly. Using a tool that automates the process can
also make the task much easier and more accurate.

So, how do you determine what access paths have changed?
Sometimes the program has changed, too – which can make it
challenging to find the exact SQL statements to compare. When
just the access paths change, it will be easier to compare them and
spot the changes, but there is still a wealth of data that needs to be
analyzed to do this justice.

And when you are talking about thousands of programs being
rebound, do you really have the time to review every access path
to make sure it is fine? This question alone causes many folks to
go back to the “Let it Ride” mentality – which is too bad, because
it is an inferior approach, especially when there are products that
can help.

VERSION MIGRATION ISSUES
Let’s switch gears and talk about an impending event that

many of us are still facing, namely migrating from DB2 V7 to V8.
First of all, let’s be clear, you do not have to rebind all of your pack-
ages and plans when you move to V8. But it is a really good idea
to do so, and most of you will probably rebind most, if not all, of
your programs when you get to V8. Why?

First of all, there are optimizer and performance improvements
that you won’t get without a rebind. And there will be degraded
program performance that will occur when you get to V8 that re-
bind can fix. And for some of you, there will even be REBINDs
that you just will not be able to avoid. Let’s examine each of these
issues briefly.

First of all, what is the “degraded performance” issue? The
problem occurs when DB2 turns off fast column processing. DB2
V3 introduced a function called an SPROC. An SPROC, or SE-
LECT procedure, enables fast column processing. Essentially, this
enhancement examines SELECT statements that are executed re-
peatedly and builds an internal procedure that moves all the col-
umns in one move rather than one column at a time. You have no
external control over when or if DB2 uses them. And the more
columns that are specified on a SELECT, the greater the perfor-
mance gain could be.

How does this all tie into Version 8? If a plan or package is us-
ing an SPROC in V7, the SPROC is using 31-bit code. When you
attempt to run that same plan or package in V8 without rebinding
it first, it needs to be in 64 bit. It isn’t, so DB2 disables the proce-
dure. The only way you can re-enable the SELECT procedure is by
rebinding the program. Until you do that rebind, and if the plan
or package uses an SPROC, your application’s performance will be
degraded. Do the rebind, and you should see a performance im-
provement. Along those lines, the IBM redbook titled “DB2 UDB
for z/OS Version 8 Performance Topics” specifically warns of this
problem, cites the potential for CPU increases of up to 10 percent
and recommends global rebinds.

And what about those rebinds that cannot be avoided. Well,
DB2 V8 will autobind any plans and packages that were bound
prior to DB2 Version 2 Release 3. So you might experience an ex-
ecution delay the first time such plans are loaded unless you rebind
them yourself. And DB2 might change the access path due to the
autobind, potentially resulting in a more efficient access path – or
a more inefficient access path.

Such actions might become more common in future DB2 ver-

31www.idug.org

sions. In several conference presentations, folks at IBM have sug-
gested that in the future DB2 may autobind any plan or package
that was last bound on an “out of service” version of DB2. What
might that mean for DB2 V9? Right now, only V7 and V8 are in
service, so think about that when you are considering your rebind
approach.

And there are still more reasons to rebind when moving to V8.
DB2 V8 in NFM uses a different format for its DBDs, packages
and plans. Before it can use a DBD, plan or package from an older
DB2, it must first be expanded to the new Version 8 format. This
causes more overhead. What should you do? Here is the advice
right out of the afore-mentioned redbook:

After you have entered new-function mode, we recommend
that you plan to rebind all of your plans and packages. DB2 will
then store the plans and packages in the DB2 catalog in the new
format. DB2 will no longer need to expand the plans/packages
each time it needs to use them.

SUMMARY
Forward-thinking organizations should adopt a liberal Bind/

Rebind process to ensure optimal access paths based on up to date
statistics. Keeping abreast of data changes and making sure that
your programs are optimized for the current state of the data is the
best approach. This means regular executions of RUNSTATS, RE-
ORG, and REBIND. If you are worried about rogue access paths,
consider investing in a third-party tool that can assist with access
path changes management issues.

Failing to keep your access paths aligned with your data is a
sure recipe for declining DB2 application performance.

ABOUT THE AUTHOR

Craig S. Mullins is president and principal consultant with Mullins
Consulting, Inc. He is an IBM Gold Consultant, the author of two
books, DB2 Developer’s Guide, 5th ed. and Database Administra-
tion: Practices and Procedures, and can be reached via his Web
site at www.CraigSMullins.com.

Index to Advertisers

IDUG Conference 32
HLS Technologies 3
Relational Architects Inside Back Cover
Responsive Systems Back Cover
BMC Software, Inc. Inside Front Cover

