What Is A Stored Procedure?

any RDBMSes provide sup-
port for stored procedures to
assist developers in accessing

stored data. But what exactly is a stored
procedure? Those who have never used
them may be inclined to dismiss them
as nonessential. However, stored pro-
cedures provide a great deal of power
when accessing relational data. Soon,
any RDBMS that does not support
stored procedures will be significantly
hampered in the fast-paced client/
server marketplace.

The Basics

Stored procedures are specialized
pieces of code stored in the RDBMS.
The motivating reason for stored pro-
cedure support is to move SQL code off
the client and onto the database server.
This results in less overhead because
one client request invokes multiple
SQL statements.

Stored procedures are like other
database objects, such as tables. views
and indexes, in that they are controlled
by the DBMS. Depending on the particu-
lar RDBMS implementation, stored pro-
cedures may also physically reside in
the RDBMS. However, a stored pro-
cedure is not “physically” associated
with any other object in the database. It
can access and/or modify data in one or
more tables. Basically, stored pro-
cedures can be thought of as “programs”
that “live” in the RDBMS.

All stored procedures are uniquely
named and invoked by executing the pro-
cedure by name. This is a crucial point:
A stored procedure must be directly
called before it can be executed. It is not
event-driven. Contrast this with the con-
cept of database triggers, which are
event-driven and never explicitly called.
Triggers are automatically executed (or

ENTERPRISE SYSTEMS JOURNAL * DECEMBER 1994

“fired”) by the RDBMS as the result of
an action; stored procedures are never auto-
matically invoked (unless they are ex-
plicitly called from within a trigger). For
more information on triggers, see “What
Is A Trigger?” (£SJ, August 1994).

Why Use Stored Procedures?

The most compelling reason to use
stored procedures is to promote code
reusability. Instead of replicating code on
multiple servers, stored procedures enable
code to reside instead in a single place —
the database server. Stored procedures
can be called from client programs and,
possibly. other stored procedures. This is
preferable to cannibalizing sections of
program code for each new application
that must be developed. By coding a
stored procedure, the logic can be in-
voked from multiple processes instead of
being recoded into each new process ev-
ery time the code is required.

Creating and using stored procedures
increases consistency. If everyone is us-
ing the same stored procedures, then the
DBA can be assured everyone is running
exactly the same code. If users used their
own individual batch scripts, no assur-
ance could be given that the same code
was being used by all. In fact, it is almost
a certainty that inconsistencies will occur.

Stored procedures are particularly use-
ful for reducing the overall code maint-
enance effort. Because the stored procedure
exists in one place, changes can be made
quickly without requiring propagation of
the change to multiple workstations.

Another common reason to employ
stored procedures is to enhance per-
formance. A stored procedure may re-
sult in enhanced performance because
it is typically stored in parsed (or com-
piled) format, thereby eliminating
parser overhead. Additionally, stored

By Craig S. Mullins

Stored procedures
are a powerful
feature of many
RDBMS products
today. They enable
multiple data access
statements to be
executed with a

single request.

67

Stored Procedures

procedures tend to reduce network
traffic because multiple SQL state-
ments can be invoked with a single ex-
ecution of a procedure instead of
sending multiple requests across the
communication lines.

Security issues can be addressed using
stored procedures. Consider a stored pro-
cedure that can access only a specific
portion of the data. Certain individuals
can be granted access to the database
only through the stored procedure,
thereby encapsulating database security
within the procedure.

Additionally, stored procedures can be
coded to support database integrity con-
straints, reduce code maintenance efforts
and support remote data access (see the
next section on RPC). There are prob-
ably more reasons to use stored pro-
cedures than can be adequately covered
in an article of this length.

Remote Procedure Call (RPC)

Stored procedures are critical for sup-
porting RPC according to the Open
Software Foundation’s Distributed Com-
puting Environment (OSF/DCE). The

VSAMEXEC™

B REXX Command Interface
to access VSAM Data Sets

B Supports KSDS, ESDS,
RRDS and LDS data sets

B Key, Address and
Control Interval access

B Interface to ENQ/DEQ

B Available on TSO/ISPF,
BATCH, NETVIEW, etc.

$ 2950.00 orc
(L FOLIUM Inc.

207 East Bay St., Suite 300
Charleston, SC 29401

1-803-853-2241

30 DAYS FREE TRIAL

CIRCLE #112 on Reader Service Card A

basic premise behind RPC is that an al-
gorithm can be executed from a worksta-
tion, but the actual code is processed on
a remote machine.

An RDBMS supports RPC if it pro-
vides distributed data access and distrib-
uted stored procedures. RPC support
enables a workstation application to in-
voke a stored procedure that executes on
the server. The workstation and the
server are different machines — remote
from one another. This is an RPC.

RPC is not necessarily supported by
an RDBMS product simply because it
provides stored procedure support.

Creating Stored Procedures

Each RDBMS product that supports
stored procedures does so in a different
manner. There is no consistent, imple-
mented methodology for creating stored
procedures. There are, however, two
basic types of stored procedures.

The first type of stored procedure is
implemented using SQL alone. Typi-
cally, the RDBMS vendor will provide
extensions to its SQL dialect to support
looping, branching and other program-
ming constructs. This facilitates the cod-
ing of stored procedures without
requiring an external host language
(such as C, COBOL or REXX). In this
type of environment, stored procedures
are usually created using DDL. The cre-
ate procedure statement will allow the
developer to name the procedure, along
with any parameters, followed by the
actual (extended) SQL code for the
stored procedure.

The second type of stored procedure
requires a host language. The stored
procedure is coded in that host lan-
guage (3GL or 4GL) and includes em-
bedded SQL. Depending on the actual
implementation, the SQL may be dy-
namic, static or both. Additionally,
some RDBMS products support true
embedded SQL while others require
SQL API (such as ODBC) calls. Once
created, the stored procedure is regis-
tered to the RDBMS and can be explic-
itly executed as desired.

Executing A Stored Procedure

Stored procedures are invoked by
name in conjunction with a keyword. The
keyword will depend on the implementa-
tion but is typically something like “exe-
cute” or “call.” So, to invoke a stored

_procedure named “calc_salary” a state-

ment such as the following may be used:
execute calc_salary parameters
Usually, stored procedures can be ex-
ecuted from within any of the following:
 Batches of SQL statements
¢ Other stored procedures
» Triggers
¢ Third-party programs
* Client application programs.

Nested Procedures

Some RDBMS products allow one
stored procedure to call another stored
procedure. However, this is not a re-
quirement for stored procedures, so
check your particular product to see if
this feature is supported.

Nested procedures can be tricky to
code and debug. This is particularly
true if stored procedures can recur-
sively call themselves. Before imple-
menting nested procedures, be sure to
document which procedures can be
called by other procedures.

Generally, there is an upper limit on
the levels of nested stored procedure
calls that can be made.

Procedure Cache And
Query Plans

Stored procedures are often stored in a
parsed or compiled format. The manner
in which the RDBMS provides this will
differ. For example, DB2 for AIX (for-
merly DB2/6000) requires the stored pro-
cedure program to be compiled before it
will be executed. SQL Server, though,
provides a more interesting scenario.

SQL Server parses the stored proce-
dure and stores it in the system catalog
when it is created. Upon its first execu-
tion, the parsed code is read from the
system catalog, optimized, compiled and
loaded into an area of storage called pro-
cedure cache. Because the procedure is
optimized the first time it is read from
disk, the query plan can be reused by
subsequent processes as long as it re-
mains in the procedure cache.

Although optimization of the pro-
cedure on initial access aids reusability,
the first query plan created may not be
appropriate for all users. Different users
may have different access requirements
dictating that new access paths be for-
mulated. In this case, each time the
query is run by a different user, a new
query plan should be created.

To reoptimize a stored procedure for
each and every execution, it can be cre-

ENTERPRISE SYSTEMS JOURNAL » DECEMBER 1994

Stored Procedures

ated using the “with recompile” option.
Every time the procedure is executed, a
new query plan will be formulated.

Alternately, the stored procedure
could be created as usual (without the
“with recompile™ parameter), and the
“with recompile™ option can be speci-
fied on the exec statement instead. Us-
ing this approach, some users can reuse
the current query plan, and others (usu-
ally only extremely performance-sensi-
tive executions) can specify “with
recompile” at execution time to reevalu-
ate access paths.

Stored Procedure Restrictions

There are typically restrictions on the
type of processing that can be accom-
plished by stored procedures. Once
again, however, this will vary based on
the RDBMS implementation.

In general, it is quite common for
stored procedures to limit DDL and
DCL, use of transaction processing state-
ments such as COMMIT/ROLLBACK
and certain database commands. Addi-
tionally, there may be a limit on the
overall size (number of bytes) of the

Ron Legacy, CICS Programs
Above The 16MB Lme
with

 XBBoVE/GICS

e Eliminate MRO overhead

* Make more room for programs
to run below the line

* Run all programs resident

* Increase program buffer sizes

® Eliminate CICS compression

16 Megabyte
address
space

2 Gigabyte
address
space

Available for VSE/ESA, MVS/XA, and MVS/ESA

For more information, or to order your 30-day free frial, please write or call today

SCFTWARE FURSUITS i)

1420 Harbor Bay Parkway, Suite 200 e Alameda, CA 94502
510-769-4900
Toll Free 800-367-4823, Fax 510-769-4944

70

CIRCLE #43 on Reader Service Card A

Sample Stored Procedure

create proc verify_book (@t_id char(6)=null)
as
declare @msg varchar(60)

if @t_id = null
begin
print “Usage is: verify_book title_id"
return
end
else
begin
if exists (select 1 from titles where title_id =@1_id)
select title_id, title, pubdate
where title_id = @t_id
else
begin
select @msg="title_id" + @t_id + “not on file."
print @msg
return
end
end
relurn

stored procedures and the number of pa-
rameters that can be specified.

Using Parameters In Stored
Procedures

Most stored procedures use param-
eters to pass information to and from the
procedure. Parameters make stored pro-
cedures more flexible. The same stored
procedure can retrieve, update, delete
and/or insert different data values based
on parameterized input.

For an example of a SQL Server
stored procedure refer to Example 1.
This stored procedure, named
“verify_book™, accepts a parameter
named @t_id. The stored procedure ac-
cepts a title_id as input and verifies a
book identified by the title_id exists.

Note the parameter is given a default
value, in this case “null.” It is always a
good idea to supply a default value for
parameters. When the stored procedure
is executed, a value should be passed to
the parameter, If no value is passed, the
default value will remain. The stored
procedure can check for the default
value and prompt the user to supply an
appropriate value.

Stored Procedure Tips

Before saving a stored procedure in
the database, test the SQL by first coding
it into a batch. When all of the bugs have
been worked out, the SQL can be con-
verted into a stored procedure and saved
in the database. Following this approach
can save testing and debugging time.

Additionally, be sure to sufficiently
document the purpose and processing

ENTERPRISE SYSTEMS JOURNAL « DECEMBER 1994

Stored Procedures

flow of stored procedures using com-
ments. SQL comments are typically
coded using two dashes (“--") preced-
ing the SQL. Use the commenting syn-
tax of the appropriate development
language if the stored procedure is not
implemented in SQL but instead in a

3GL or 4GL.
Conclusion

Stored procedures are a powerful fea-
ture of many RDBMS products today.
They enable multiple data access state-
ments to be executed with a single re-
quest. Additionally, they are controlled

Instead of

replicating code on
multiple servers, stored
procedures enable code
to reside instead in a
single place — the

database server.

and managed by the RDBMS, providing
a consistent and reusable point of refer-
ence for frequently executed database
code. Many products (such as DB2 for
AIX, SQL Server and Oracle 7) support
stored procedures today. Many others
(such as DB2 for MVS) will support
them in the near future. It is a wise
course of action to learn about stored
procedures and what they can provide

today, before it is too late! &

ABOUT THE AUTHOR

Craig S. Mullins is
manager of educa-
tion technology at
Platinum technology,
inc., where he spe-
cializes in Sybase
SOL Server, the DB2
Sfamily and client/
server. Platinum technology, inc.,
1815 8. Meyers Rd., Oakbrook Ter-
race, IL 60181, (708) 620-5000. He

can also be reached through

CATALOG SOLUTION
A winner every time!

Without a facility to recover from Catalog/VTOC/VVDS problems,
you’re leaving your system availability to the roll of the dice.

Keep the odds in your favor with Catalog Solution, the premier
tool for catalog diagnosis, management, recovery, maintenance
and contingency planning.

® Repair broken VSAM data
sets and catalogs

® Backup and restore catalogs

e [dentify data sets with
® Reduce downtime from excessive CI/CA splits
hours to minutes and/or extents
® Prepare BCS & VVDS for e Identify duplicate VVDS
SMS implementation records

® Identify over-allocated data ® Completely uplevel VVDS
sets records

Don’t gamble with your catalog environment. Call Softworks today and
discover what Catalog Solution can do for you and your data center.

SOFTWORKS

Think Solutions, Thmk Softworks.

5845 Richmond Highway, Alexandria, Virginia 22303
U.S.A. 1-800-727-4422 » International 1-703-317-2424

CompuServe, 70410,237.

ENTERPRISE SYSTEMS JOURNAL < DECEMBER 1994

CIRCLE #29 on Reader Service Card A 7

