Special S5
Kidder Peabody ;
DB2 User Survey

Craig S. Mullins

o -

T

o B PR i e i e XL

L e
o i ol

vz @ TODAY
.

CAF.

180, CICS, IM3/VS,

00909900909 OOPOPO OO POOOPOPOPOPOPOOPOOOPOPOOOROOROOROEOOO

o he Doors fo DB,

-

LEL LB BN RN NN N NN NN NNENNNENNENNNNNNNNNNNNNN]

by Craig S. Mullins

though, let me

emphasize that it is

not my intent to teach

how DB2 is accessed
from these environments,

but to help you understand each environ-

ment’s strengths and weaknesses.
Fundamentals

Certain fundamental facts are true regard-
less of the environment in which your DB2
program will operate. Each DB2 program
must be connected to DB2 via an attach-

ment facility— the mechanism by which an
environment is connected to a DB2 subsys-
tem. Additionally, a thread must be estab-

lished for each embedded SQL program

Overview of the available DB2 Processing Environments

Environment
- TSSO

is not my intent to teach how DB2

Every program, regardless of the environ-
ment in which it executes, must communicate

with DB2 through a thread.

When the thread is established, DB2 will
begin the process of loading the executable
form of the plan (called a cursor table, or CT)
into memory from the DB2 Directory. Plans
are stored in the directory as a structure
called a skeleton cursor table, or SKCT. If
the plan is composed of packages, it will also
load the package table (PT) from the directo-
ry SKPT. These CTs and PTs are loaded into
an area of memory reserved for DB2 program
execution called the Environmental
Descriptor Management Pool, or EDM Pool.
DBDs required by the plan will also be loaded
into the EDM Pool from the DB2 Directory.

batch processing.

Batch applications, by contrast, are char-
acterized by their lack of user interactions.
A batch program typically is submitted via
JCL. It can accept parameters as input,
but does not rely upon an end-user being
present during its execution. Batch pro-
grams are generally used to perform mass
updates, create reports and perform com-

plex, non-interactive processes,

Each specific environment provides differ-
ent modes of operation within each of these
basic categories. For a quick overview of
which environment supports which mode,

consult Figure 1.

C

e

CAF

that is executing. The thread will be used to
send requests to DB2, data from DB2 to the
program, and to communicate the status of
each SQL statement after it is executed
through the use of the SQLCA.

Now, let’s explore the process that is fol-
lowed when invoking a DB2 application
program. First, the program is initiated
and calls up the attach facility appropriate
for the program environment. Following
this, security will be checked (external MVS
security, internal environment security and
DB2 security). Finally, upon execution of
the first SQL statement in the program, a
thread is created. A thread is nothing more
than a control structure used by DB2 to

communicate with an application program.

Now that we have a basic understanding of
the way application programs communicate
with DB2, let’s explore the different pro-
cessing environments for DB2. In the most
basic terms, DB2 programs can bhe run in
either foreground, otherwise called on-line;

or in background, normally called batch.

On-line applications are characterized by
interaction with an end-user via a terminal.
Most on-line applications display a screen
prompting a user for input, accept data
from that screen, process the data and dis-
play another screen until the user deter-
mines that the session is to be terminated.
On-line programs are generally used to pro-
vide real-time update and query capabili-

ties, or to enter transactions for future

viz @ Tooay

*~ CAF supports on-line programs when E

TSO

TSO, the first of these environments, is
short for Time Sharing Option. It enables
users to interact with MVS using an on-line.
optionally panel-driven interface. The
Interactive System Productivity Facility, or
ISPF, provides the mechanism for commu-
nicating via panels; it is the primary vehicle
for users operating under TSO. Access to
DB2 resources is provided via the TSO

Attachment Facility in one of two ways:

[On-line, in TSO foreground, driven by
application programs, CLISTs and/or
REXX EXECs coded to communicate with
DB2 and TSO, possibly using ISPF panels.

is accessed from

U] In batch mode using the TSO Terminal
Monitor Program, IKJEFTO1. to invoke
the DSN command and run a DB2 applica-

tion program,

TSO is one of the three on-line environ-
ments supported by DB2. but unlike the
other two, TS0 is not transaction-driven.
The TSO Attachment Facility operates on a
communication channel that uses a single
thread to direct DB2 calls. Only one thread
can exist at any one time for each TSO
address space. and each user can be logged
on. in foreground. to only one TSO address
space at any given time. Each bateh TSO
job. however. initiates a different invoca-
tion of the TMP, allowing numerous batch
TSO jobs submitted by the same user to be
running simultaneously. The batch jobs
are independent from any foreground TSO
activity, so a single user, at any given time,

can have:

_ One on-line TSO session communicating
with DB2.

LI Multiple batch TSO jobs communicating
with DB2.

Simply by installing DB2. the TSO
Attachment Facility is available for use.

Communication between DB2 and TSO is

TR
s m———E
csTER e S

accomplished via the DSN command
processor—bundled with DB2—which
enables DB2 commands to be issued in the
TSO environment. One of these, the RUN

command, is used to execute DB2 applica-

these environments,

tion programs. A sample is shown in Figure 2,

Additionally, IBM bundles two on-line TSO
applications with DB2 that can be used to
access DB2 data: DB2 Interactive (or

DB2L, for short) and Catalog Visibility.

The DSN command processor establishes
the thread that enables TSO to communi-
cate with DB2. An alternative method

is to use the Call Attach Facility within
TSO to communicate with DB2. The Call
Attach Facility will be discussed later in

this article.
CICS

The second of the four “doors to DB2™ is
CICS (Customer Information Control
System), a teleprocessing monitor that
enables programmers to develop on-line,
transaction-based programs. By means of
BMS (Basic Mapping Support) and the data
communications facilities of CICS. pro-
grams can display formatted data on
sereens to end-users and receive formatted
data from end users for further processing.
A typical scenario for the execution of a
CICS transaction follows:

1) Operator enters data on terminal
(including a transaction ID) and presses

enter. This can simply be a transaction 1D

g
s p—

s :

entered by the operator or a formatted

BMS sereen with the transaction 1D.

2) Datais read into terminal I/O area and a

task is created.

oz €I ropay

SYl1HBua43)s S JHUSUWUOCIIAUD oed puejisiapun noA djay o3 1nqg

and weaknesses.

The Doors fo DBz

GICS Attach Family

CICS Address Space

3) Checks to ensure
that the transaction ID
is valid.

4) If the program for gl

Tran

this transaction is not
in main storage, it is

loaded.

Attach Facility
DNSCEXT1 (Thraad
cics Thread
Task
Related
User
Exit Thread

DB2
Address Space(s)

DB2Z Command

The TRUE for-

mats the request
for DB2 data

and passes it to

Plan

Plan

5) Task is placed into
queue until it is dis-

patched.

6) When the task is dispatched the appro-

priate application program will be run.

7) Program requests BMS to read data

from the terminal.

8) BMS reads the data and the program

processes it.

9) Program requests BMS to display data

to a terminal.
10) BMS displays the data.
11) The task is terminated.

When DB2 data is accessed via CICS, mul-
tiple threads can be active simultaneously,
enabling concurrent access to a DB2 sub-
system by multiple users of a single CICS
region. Contrast this with the TSO envi-
ronment, where only one thread can be
active for any given TSO address space. A
mechanism named the CICS Attach Facility
is used to connect CICS with DB2. Using
the CICS Attach Facility:

[J Any given CICS region can be connected
to one and only one DB2 subsystem at one

time.

[J Any given DB2 subsystem can be con-
nected to multiple CICS regions at the same

time.

In order to fully understand how CICS con-
trols the execution of an application pro-
gram, one must first understand the rela-
tionship among tasks, transactions and pro-
grams. These three terms each define sepa-

rate entities that funetion tngl-thu-r. under

the control of CICS, to ereate an on-line

processing environment.

A task is simply a unit of work scheduled by
the operating system. CICS, a batch job,
DB2 and TSO are examples of tasks. CICS,
however, can schedule tasks under its con-
trol much like an operating system sched-
ules tasks. A CICS task. therefore. is a unit
of work, composed of one or more pro-

grams, scheduled by CICS.

A transaction initiates a task. A CICS
transaction is initiated by an identifier. 1 to
4 bytes long, defined to CICS via a control
table. There is generally a one-to-one cor-
respondence between CICS transactions
and CICS tasks, but it is possible for one

transaction to initiate more than one task.

Finally, a program is an organized set of
instructions designed to accomplish some
objective in a given unit of work. A CICS
program can perform one or many CICS

tasks.

As mentioned earlier, CICS must he
attached to DB2 before any transaction can
access DB2 data. This is accomplished via
the CICS Attach Facility. The basic opera-
tion of the CICS Attach Facility is depicted
in Figure 3. The CICS Attach Facility pro-
vides support for multiple transactions
using multiple threads to access data in a
single DB2 subsystem. CICS transactions
requiring DB2 resources are routed to DB2
via DSNCLI each time an SQL statement is
encountered, using the functionality of the

CICS Task Related User Exits (TRUE).

onz €EP Topay

the CICS Attach

Facility, which

either creates a new thread or reuses
an existing one. if available.

When a thread is created the following
activities will occur:

(1 A process known as DB2 sign-on is
initiated, whereby the authorization

ID— identifying the user of the

thread—is iblished based upon a

parameter specified in the RCT.

1 A DB2 accounting record

is written.

"] Authorization is checked for

the user.

_I The executable form of the plan is
loaded into memory. More specifical-
ly. if the header portion of the SKCT is
not already loaded into the EDM Pool,
it will be loaded at this point. The
SKCT header will be copied into an
executable form called a cursor table.

and placed in the EDM Pool.

3 Sped

[T If VALIDATE(RUN) wq

when the plan was bound;

mental bind will b

should be avoided:

O If ACQUIR
specified at bi
locks for all tak
plan will be acq
enced by the pl:
memory (EDM Pool).
to be used by the pla

if they are not already

After the thread is created Uthe |

corresponding to the transaction bé

executed is allocated and the SQL
statement is processed. When the

request for DB2 resources is satisfied.
Continued on page 45

The Doors to D62

Continued from page 43

the data is passed back to the requesting
CICS program via the TRUE. The thread is
placed in an MVS-wait state until it is need-
ed again. When the next SQL statement is
encountered in the CICS program, the
entire process is repeated except for thread
creation, because the thread has already
been allocated and is waiting to be used.

‘When the CICS task is terminated, or a
CICS SYNCPOINT is issued, the thread is
terminated, causing the following actions:

O The CICS Attach Facility performs what
is called a Two Phase Commit. This func-
tions to synchronize the updates and com-
mits made to all defined CICS resources
(ie., IMS databases, VSAM files, sequential
files) and DB2 tables.

(O A DB2 accounting record is written.
O Tablespace locks are released.

O The executable form of the plan is freed
from the EDM Pool.

O Memory used for working storage is freed.

O If CLOSE(YES) was specified for table-
spaces or indexes used by the thread, the
underlying VSAM datasets will be placed on
the drain queue for closing (provided no

other resources are accessing them).

The CICS Attach Facility is started via the
DSNC STRT command, indicating the spe-
cific RCT to use. The RCT (Resource
Control Table) defines the attachment of
CICS and DB2. It also assigns a type of
thread to each CICS/DB2 transaction.
There are three types of threads that can be
used by CICS transactions to access DB2:

O Command Threads, usable only by the
DSNC command processor. If no command
threads are available, then pool threads
will be used instead.

O Entry Threads, also called dedicated
threads. These are associated with a single,
specific application plan. Multiple transac-
tions can be identified to an entry thread

grouping defined in the RCT, but each
transaction must use the same application
plan. Entry threads are reusable by subse-
quent CICS transactions which use the same
application plan. This can result in
decreased run time because the cost of
establishing the thread is avoided when it
can be reused.

Entry threads can be defined as either pro-
tected or unprotected. A protected thread
remains available for a pre-set time inter-
val, waiting for transactions that can reuse
the thread. Unprotected threads will be
terminated upon completion unless another
transaction is already waiting to use it. If
an entry thread is not available for a trans-
action’s use, it may be diverted to the pool,
where it will utilize a pool thread.

0O Pool Threads may be used by any trans-
action specifically defined to the pool. In
addition, any transaction can be defined to
be divertable. A divertable transaction is
one defined to an entry or command thread
where, if no appropriate threads are avail-
able, the transaction will be diverted to use
a pool thread. A pool thread is not reusable
and will always be terminated upon comple-

tion of the transaction using it.

IMS/VS is IBM’s pre-relational database
management system offering. It is based
upon the structuring of related data items
into inverted trees or hierarchies. The
acronym IMS stands for Information
Management System. Although usually per-
ceived as a DBMS only, IMS/VS is actually a

combination of two components:
O IMS/DB, the database management system.

O IMS/TM, the data communications envi-

ronment, or teleprocessing monitor (also

known as IMS/DC).

Either of the components of IMS can be
used separately or together. On-line access
to IMS databases can be achieved via either

DB2 o TODAY

IMS/DC or CICS. Access to IMS databases
is also provided in a batch environment.
When an IMS database is accessed via
IMS/DC it is said to be on-line; when it is
accessed in batch it is said to be off-line.

IMS/DC provides an on-line environment in
which application programs can be run that
communicate with a terminal, much like
CICS. Likewise, IMS/DC can be used by
programs that access not only IMS databas-
es, but DB2 tables as well. Although IMS
and CICS are alike in many respects, the
IMS environment differs from CICS in

many significant ways. For example:

O IMS uses a facility called MFS (Message
Format Services) to format messages to ter-

minals and printers; CICS uses BMS.
O IMS/DC does not rely upon tables to con-

trol its environment, but on a series of
macros known as a SYSGEN. The SYSGEN
defines the terminals, programs, transac-

tions and the general on-line environment

for IMS/DC.

O All IMS programs require a program
specification block (PSB) that defines the
access to IMS/DB databases and IMS/DC
resources. These PSBs are defined, along
with IMS DBDs that define the structure of
the IMS databases to be accessed, to control
a program’s scope of operation.

O An additional control block, the ACB
(application control block), is used in the
on-line world (and optionally in the batch
environment) to combine the PSBs and
DBD:s into a single control block defining
the control structure and scope of all IMS

programs.

(0 The IMS on-line environment is com-
posed of many different processing regions.
All IMS/DC activity is processed through
aregion. There are two types of regions:

O A control region that manages IMS

activity and processes commands.

IMS Attach Facility

IMS/VS Address Space

[} Dependent
regions, up to 255 per
IMS/DC subsystem.
Application programs
execute from depen-

dent regions.
IMS programs are cat-
egorized based upon

the environment in

the types of databases they can access,

which they run and

There are four types of IMS programs:

An IMS batch program is invoked by JCL
and runs as an MVS batch job. IMS batch
programs can access only off-line IMS data-
bases. unless IMS Data Base Recovery
Control (DBRC) is used. When DB2 tables
are accessed by IMS batch programs. they
are commonly referred to as DL/I batch.
DL/I—Data Language/l—is the langnage
used to access data in IMS databases, just
as SQL is the language used to access data
in DB2 tables. Batch DL/I programs run

independently of the IMS/DC environment.

The second type of IMS program is a batch
message processor, or BMP. BMPs are a
hybrid program combining elements of both
batch and on-line programs. A BMP runs
under the jurisdiction of IMS/DC but is
invoked by JES and operates as a batch
program. All databases accessed by a BMP
must be on-line to IMS/DC. There are two
types of BMPs:

] Terminal-oriented BMPs can access the
IMS message queue to send or receive mes-

sages from IMS/DC terminals.

] Batch-oriented BMPs do not access the
message queue and cannot communicate

with terminals.

True on-line IMS programs are called mes-
sage processing programs, or MPPs. They
are initiated by a transaction code. access
on-line databases and communicate with

terminals via the message queue.

Production
DB2 Address
Space

Test
DB2 Address

CAF programs can be
executed in one of four
ways:

[] As an MVS batch job

L1 As a started task

Space

Threads

The final type of IMS program is a fast path
program—nhigh performance MPPs that
access a special type of IMS database known

as a fast path database.

As with the other environments, a special-
ized attachment facility is provided with
DB2 to enable IMS to access DB2 resources.
The IMS attach facility. due to the nature of
IMS, provides more flexibility for connect-
ing to DB2 than the attach facilities for TSO
or CICS. Refer to Figure 4:

[One DB2 subsystem can connect to mul-

tiple IMS subsystems

" One IMS subsystem can connect to multi-

ple DB2 subsystems

_| One IMS region can connect to multiple

DB2 subsystems

One IMS application program can access

only one DB2 subsystem

DB2 is connected to IMS by a subsystem
member (SSM). The SSM defines the para-
meters of the IMS attach facility for both

on-line and batch connections.

CAF

The final “door to DB2" is the Call Attach
Facility (CAF). CAF differs from the previ-
ous attach mechanisms since it does not pro-
vide teleprocessing services. CAF manages
connections between DB2 and batch and
on-line TSO application programs, without
the overhead of the TSO terminal monitor

program.

iz € ropas

As a TSO batch job

1 As an on-line TSO
application

CAF controls a program’s connection to
DB2 as depicted in Figure 5. The DB2 pro-
gram communicates to DB2 through the
CAF language interface. DSNALL The pri-
mary benefit of using CAF is that the appli-
cation can control the connection using

CAF calls. There are five CAF calls:

DISCONNECT Himinates the connection between
the MV$ address space and DB2.

CLOSE Terminates the thread.

Prior to DB2 V2.3, these calls had to be
coded in Assembler because it was necessary
to examine registers to ascertain return and
reason codes. DB2 V2.3, however. elimi-
nates this: it provides optional parameters
to the CAF calls, enabling the retrieval of
return and reason codes by high level lan-

guages.,

Typically. a control program is created to
establish and terminate the DB2 connec-
tion. This module is not required, but it is
recommended to eliminate the repetitious
coding of the tedious tasks associated with
connecting, disconnecting, opening and

closing in every CAF program.
(- L t =l

CAF programs

CAF programs must be link-edited with the
CAF language interface module, DSNALIL.

The benefits of CAF are many. First and
formeost, CAF provides explicit control of
thread ereation. Also, a program designed
to use CAF can run when DB2 is down. It
cannot access DB2 resources, but it will be
able to perform other tasks. This can be
useful when the DB2 processing is optional,
parameter-driven, or contingent upon
other parts of the program. And finally,
CAF is more efficient than DSN, eliminat-
ing overhead required by the TSO TMP,
IKJEFTOI.

There are drawbacks to CAF, however.
CAF requires more complex error-handling
procedures. DSN automatically formats
error messages for connection failures,
whereas CAF will return only a return code
and a reason code. Also. DSN automatical-
ly handles the connection; CAF requires the
program to handle it. However. these
drawbacks can be eliminated by coding this
support into the CAF interface module at
your site. This will invelve your shop sup-

porting logic—which is sometimes quite

complex—that would otherwise be provid-

ed by DB2 itself.
Comparison of the Environments

Now that we have covered each of the envi-
ronments in which DB2 programs can exe-
cute, we can begin to compare and contrast
their features and capabilities. First and
foremost, when choosing an operating envi-
ronment for a DB2 application, one should
ensure that it can support the data needs of
the application. Typically, a corporation’s
data is spread across disparate processing
platforms and data storage devices.
Additionally, the data is stored in many dif-
ferent physical manifestations. When
choosing an environment for your applica-

tion, consider:

[] Do I have access to the environment that

must be link-edited i

[wish to use for a development platform? If

not. can | obtain aceess?

C1 Is it possible to access enterprise data in
its existing format, or will my choice of envi-
ronment require that the data be duplicated

and placed into a readable format?

L1 Are the programmers who will be work-
ing on the project knowledgeable in the cho-
sen environment, or will extensive training

be required?
Resource Availability

Figure 6 provides a breakdown of resource

availability by processing environment.

Comparison of Resource Availability

Resource

Flat File
Access

Bue] 4vD 241 Yyl

&
2
@
o

VSAM
Access

IMS
Databases
On-Line

IMS
Databases
Off-line

Invoked by
JCL

invoked by
Transaction

Invoked by
CLIST or
REXX EXEC

Invoked by

This chart can be used as a reference when
choosing a processing environment for your

DB2 applications.

Some of the entries in this chart for the different
types of IMS programs may be confusing. The fol-
lowing list should clear up this confusion:

[The presence of a Y™ indicates that the
processing environment listed across the top
of the chart can access the resource defined
along the left side. Although, the resource is
accessible, it might not be possible to do so in
vour shop. Certain shops pose restrictions
and limitations upon access: always consult

your shop standards before proceeding with

i @G rovay

d “SImnmpouu 2o ejaA93uUu

'

Each environment has its own

strengths

|
;
E
g‘
:
i
|
:

development plans based upon this chart.

! Flat file access is available using IMS
calls when a GSAM database is defined for
the flat file. (GSAM stands for Generalized
Sequential Access Method.) IMS BMPs and
batch programs can access flat files as
GSAM databases. Access to flat files using
pure OS/VS reads and writes is available to

IMS batch programs only.

1 Al IMS programs can access VSAM
KSDS datasets as a SHISAM database.
(SHISAM stands for Simple Hierarchic
Indexed Sequential Access Method.) Once
again, IMS batch programs are the only
type of IMS program that can access a

VSAM file using VSAM dataset commands.

[C] IMS on-line databases are those defined
to the IMS control region and started for
on-line access within IMS/DC. Conversely,
an off-line IMS database is either not
defined to the IMS control region and
hence, not accessible by IMS/DC or it is
stopped (sometimes referred to as DBRed)

to IMS/DC.

Feasibility

and weaknesses; these should be surveyed

After ensuring that what is desired is possi-
ble. the next step is to ascertain whether it

is feasible. It is feasible to develop an appli-

Comparison of On-Line Development Capabilities
Capability

Response Time

Flex $'4

Number of Concurrent
Users

Overhead per User

Program Linking

On-line Screen Language

Screen Development
Program Development
Prototyping & Testing %
Tools Available

vz @ ropay

development solution.

cation in a specified environment if the
response time and availability requirements
of that application can be satisfactorily met
by the environment. Typically, a service
level agreement should be drawn up for
each new application that includes a
price/performance matrix which end users

must agree to. For example:

The on-line portion of the system
must provide an average response
time of x seconds, y% of the time,

for an average of z users. The
cost per transaction will be
approximately a.

Utilize the chart in Figure 7 to determine
which on-line environment is feasible for
any given project. Take the following items

into account:

C] What is the deadline for system develop-
ment? What programming resources are
available to meet this deadline? Do I have
the requisite talent to develop the system in
the environment that is optimal? If not,
should I obtain them or settle for a less than
optimal solution?

[l What are the performance require-

ments of the system? How many concur-

rent users will be using the system during

|__cics | mspc

I P~ l
the peak processing time, and can the

given environment support the workload?

Sometimes there is little or no choice:
some shops have only one of the environ-
ments and for them, the decision is easy.
However. if you have more than one envi-
ronment, the right decision is never to use
only one of them. Each environment has
its own strengths and weaknesses: these
should be surveyed before leaping head-

! il &
long into an application development solu-

tion. u

However, when multiple environments are
used to access DB2 data. they become 2
inextricably wound together into a eritical i'i

mass. This can be difficult to administer

and warrants consideration.

The Critical Mass

When accessing DB2. the teleprocessing
monitor—Dbe it TSO. CICS or IMS/DC—
must reside on the same MVS system as

DB2. This creates what is referred to as a
critical mass. The critical mass is the set

of subsystems tied together by a single ,%l
common attribute: they must access DB2 *
resources. For example. if a data process- i'iﬁ
ing shop uses hoth CICS and IMS/DC to %
develop DB2 applications. their critical £

mass consists of the following:

_| The IMS/DC subsystem

| All CICS subsystems requiring DB2
access

__| The DB2 subsystem

L A TSO subsystem if DB2I access is

required

These must all operate on the same CPU.
Additionally. in an error situation. they can
not be moved independently without losing
DB2 access. One can see where a large

shopmight quickly tap the resources of its

machine if all DB2 applications are devel-

oped on a single DB2 subsystem. To avoid
this situation, consider slicing applications
into disparate. independently operating

units by:

Developing IMS/DC applications on one
DB2 subsystem, CICS applications on
another. and TSO application on yet anoth-
er. This will reduce the eritical mass such
that IMS/DC and CICS are not married

lu;_rl'tiu'l‘.

Providing distributed access between the
separate DB2 subsystems for access to DB2
data which must be shared among applica-
tions. Read-only access from one DB2 sub-
system to another is provided. without
requiring a distributed query, as it is with

DB2V2.3.

| If at all possible, choose a single telepro-
cessing environment for all DB2 applica-

tions.

~1 By avoiding DB2I and QMF access, TSO
can be eliminated from the critical mass.
You can submit SQL and DSN commands as
batch invocations of TSO, but this hampers
case of use and detracts from the overall
user-friendliness of DB2. As such. it is not

recomimend lt‘(l i
Synopsis

Each of the four environments that can
access DB2 data provides both strengths
and weaknesses. Hopefully. this article has
helped you to determine which of the four
environments will he suitable for your dif-
ferent types of application development
efforts. H

DRz @ TIAY

Craig §. Mullins works in
the Technical Advisory
Group at PLATINUM
technology, inc. His first
book, DB2 Developer's
Guide, published in 1992
by Prentice-Hall Computer
Publishing, contains ,
more than 1100 pages of
DB2 development
fechniges, tips and

gueidelines.

