
Technical Support | November 2004

High Speed Transaction
Recovery

By  C r a i g  S . Mu l l i n s

AVAILABILITY
is the Holy
Grail of

database administrators. If your data is not
available, your applications cannot run, and
therefore your company is losing business.
Lost business translates into lower prof-
itability and perhaps a lower stock valuation
for your company. These are all detrimental
to the business so the DBA must do every-
thing in his power to ensure that databases
are kept on line and operational. This has
been the duty of the DBA since the days of
the first DBMS.

But the need for availability is increasing.
The days of the long batch window where
databases can be offline for extended periods
to perform nightly processing are diminish-
ing. Exacerbating this trend is the drive
toward e-business. The Internet dramatically
alters the way we do business, creating expec-
tations for businesses to be more connected,
more flexible, and more available.

When you integrate the Web with database
management, DBAs must keep the databases
up and running for longer periods of time.
When your business is on the World Wide
Web, it never closes. Remember, the Web is
worldwide. People expect full functionality
on sites they visit regardless of the time of
day. It may be 3:00 AM in New York, but it is
always prime time somewhere in the world.
An e-business must be available and opera-
tional 24 hours a day, 7 days a week, 366 days
a year (don’t forget leap year).

These demands for higher availability
make traditional forms of database recovery
inadequate. Today’s DBA must understand
Transaction Recovery techniques to be able
to prepare an optimal approach for every
recovery situation.

This article will discuss Transaction
Recovery from a DB2 for OS/390 point-of-
view. Herein we will learn how Transaction
Recovery provides the speed and ease of a
point-in-time recovery with the selective
capability provided by custom programming.
Our discussion of Transaction Recovery will
cover the types of Transaction Recovery avail-
able, the steps required to perform each type,
and the features required for a comprehensive
Transaction Recovery solution.

TYPES OF RECOVERY

When DBAs hear the word “recovery” the
first thing that usually comes to mind is han-
dling some sort of disaster. This disaster could
be anything from a simple media failure to a
natural disaster destroying your data center.
Applications are completely unavailable until
the recovery is complete.

Another traditional type of recovery is a
Point-in-Time (PIT) recovery. PIT recovery
usually is performed to deal with an applica-
tion level problem. Conventional techniques
to perform a PIT recovery will remove the
effects of all transactions since that specified
point in time. This can cause problems if there

were any valid transactions during that time-
frame that needed to be kept.

Transaction Recovery is a third type of
recovery that addresses the shortcomings of
the traditional types of recovery: downtime
and loss of good data. Transaction Recovery
is an application recovery whereby the effects
of specific transactions during a specified
timeframe are removed from the database.

BAD TRANSACTIONS HAPPEN
TO GOOD DATABASES

Historically, recovery was performed pri-
marily to overcome disasters and hardware
failures. However, this is simply not the case

©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

FIGURE 1: CAUSES OF UNPLANNED
APPLICATION DOWNTIME

Source: Gartner Group



any more. Application failures, not hardware failures, are the predom-
inant drivers of recovery needs. Industry analysts at the Gartner Group
estimate that as much as 80% of application errors are due to software
failures and human error (see Figure 1). Although hardware and
operating system failures were common several years ago, modern
hardware and operating systems are more reliable, with a high mean
time between failure.

In reality, except for disaster recovery tests, very few DBAs need to
perform true disaster recovery. While media does fail, it’s actually quite
rare in this day and age. User errors and application failures are the
most common causes of problems requiring recovery, and therefore,
the primary cause for system unavailability. Any number of problems
can occur at the application level. Consider:

� Edit checks aren’t always 100% reliable. If there is any way
garbage data can creep in, it will. If you don’t believe me, do a
spot check of your production databases.

� A disgruntled employee tampered with data before being
discharged.

� Somebody changed job schedules or didn’t check completion
codes and processes were run out of sequence.

� No matter how much testing is done there is always the possibility
that bugs will be found once the code hits production.

� There are times, particularly in test environments, where you
may want to run a test and then roll the results back and try it
again (and again and again….)

As databases grow in size and complexity, so, too, do the chances that
bad transactions will corrupt the data on which your business depends.

TRANSACTION RECOVERY DEFINED

Transaction Recovery is the process of removing the undesired
effects of specific transactions from the database. This statement, while
simple on the surface, hides a bevy of complicated details.

Traditional recovery is at the database object level: for example, at
the tablespace or index level. When performing a traditional recovery,
a specific database object is chosen, a backup copy of that object is
applied, and then log entries are applied for changes that occurred after
the image copy was taken. This approach is used to recover the data-
base object to a specific, desired point-in-time. If multiple objects must
be recovered, this approach is repeated for each object impacted.

Transaction Recovery allows a user to recover a specific portion of
the tablespace based on user-defined criteria. So only a portion of the
data is affected. Any associated indexes are automatically recovered as
the transaction is recovered.

The transaction may impact data in multiple tablespaces, too. A
transaction is a set of related operations that, when grouped together,

define a logical unit of work within an application. Transactions are
defined by the user’s view of the process, for example, the set of pan-
els comprising a new hire operation or perhaps the set of jobs that post
to the General Ledger.

Using Transaction Recovery, application problems can be addressed
quicker, thereby maintaining a higher level of data availability. The
database does not always need to be taken offline while Transaction
Recovery occurs (it depends on the type of Transaction Recovery
being performed).

So, how exactly is Transaction Recovery performed? Well, there are
three types of Transaction Recovery: Point-In-Time, UNDO, and
REDO. Let’s examine each of these possibilities in more detail.

POINT-IN-TIME (PIT) RECOVERY

Point-in-time recovery is the simplest strategy. It also is the only one
supported by native DB2 utilities. Refer to Figure 2. With PIT recovery
you remove all transactions since a given point in time and then manu-
ally reenter the valid work. The desired result is to maintain “Good
Transaction 1” and “Good Transaction 2,” while removing the “Bad
Transactions” from the system.

You must be able to determine a common recovery point for a set
of tablespaces. A DB2 QUIESCE works fine, but if that is not avail-
able, you will have to determine a point of consistency to be used
for recovery.

After the point-in-time recovery, good transactions are missing from
the database. If the information is still available, the user could rerun or
re-enter “Good Transaction 2”. Regardless of the type of recovery to be
performed, if the error that caused the recovery to be performed is
caught too late, subsequent processing could have occurred using the
“bad data”. How to deal with these types of problems depends on the
nature of the data and the type of updates applied, and needs to be han-
dled on an application by application basis.

UNDO TRANSACTION RECOVERY

The second possibility is to deploy UNDO Transaction Recovery
(refer to Figure 3). This is the simplest type of SQL-based Transaction
Recovery. It involves generating UNDO SQL statements to reverse the
effect of the transactions in error. To generate UNDO SQL, the DB2
log is read to find the data modifications that were applied during a
given timeframe and:

Technical Support | November 2004 ©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

FIGURE 2: POINT-IN-TIME (PIT) RECOVERY

Transaction Recovery is the process of
removing the undesired effects of

specific transactions from the database.



� INSERTs are turned into DELETEs
� DELETEs are turned into INSERTs
� UPDATEs are reversed to UPDATE to the old value

To accomplish this transformation a solution is required that under-
stands the DB2 log format and can create the SQL needed to undo the
data modifications.

Note that in the case of UNDO Transaction Recovery, the portion of
the database that does not need to be recovered remains undisturbed.
When undoing erroneous transactions, recovery can be done online
without suffering an application or database outage. But, the potential
for anomalies causing failures in the UNDO is certainly a considera-
tion. We will discuss this later.

REDO TRANSACTION RECOVERY

The REDO Transaction Recovery strategy is a combination of the
first two recovery techniques we have discussed—but with a twist
(refer to Figure 4).

Instead of generating SQL for the bad transaction that we want to
eliminate, we generate the SQL for the transactions we want to save.
Then we do a standard point in time recovery eliminating all the
transactions since the recovery point. Finally we re-apply the good
transactions captured in the first step.

Unlike the UNDO process, which creates SQL statements that are
designed to back out all of the problem transactions, the REDO
process creates SQL statements designed to reapply only the valid
transactions from a consistent point of recovery to the current time.
Since the REDO process does not generate SQL for the problem
transactions, performing a recovery and then executing the REDO
SQL can restore the tablespace to a state that does not include the
problem transactions.

To generate the REDO SQL statements, you will need a solution
that can read the DB2 log and create the necessary SQL to redo the
data modifications.

When redoing transactions in an environment where availability is
crucial, a PIT recovery can be done and then the application and database
can be brought online. The subsequent redoing of the valid transactions
to complete the recovery can be accomplished with the data online,
thereby reducing application downtime.

CHOOSING THE OPTIMUM
RECOVERY STRATEGY

While Transaction Recovery may seem like the answer to all your
recovery problems, there are a number of cases where it may be neither
possible nor advisable. Consider the following questions when deter-
mining if Transaction Recovery is appropriate:

1. Transaction Identification. Can all problem transactions be
identified? You must be able to actually identify the transactions
that will be removed from the database. Can all the work that
was originally done be located and redone?

2. Data Integrity. Has anyone else updated the rows since the
problem occurred? If they have, can you still proceed? Is all
required data still available? Recovering after a REORG, LOAD,
or mass DELETE may require image copies. Will any other data
be lost? If so, can the lost data be identified somehow?

3. Availability. How fast can the application become available
again? Can you afford to go offline?

These questions boil down to a matter of cost. What is the cost of
rework and is it actually possible to determine what would need to be
redone? This cost needs to be balanced against the cost of long scans
of log data sets to isolate data to redo or undo, and the cost of applying
that data using SQL.

The ultimate Transaction Recovery solution should analyze your
environment and the transaction(s) needing to be recovered, and rec-
ommend which type of Transaction Recovery to perform.

TRANSACTION RECOVERY PLANNING

When planning for Transaction Recovery, you should review your
image copy frequency. This frequency will help determine how far
back you have to go to get a consistent state for a point-in-time recov-
ery. Also, review your policy on Data Change Capture (DCC). DCC is
an option of the DB2 CREATE TABLE statement that causes logged
data changes to be written in an expanded format. To implement DCC,
alter your tables to include the clause DATA CAPTURE CHANGES.
With DCC enabled, generating UNDO and REDO SQL statements will
be faster because the SQL generation process need not perform expen-
sive row completion operations. However, your Transaction Recovery
solution should be able to function with, or without, DCC enabled.

Technical Support | November 2004©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

FIGURE 3: UNDO TRANSACTION RECOVERY

FIGURE 4: REDO TRANSACTION RECOVERY



To effectively plan for, and perform a Transaction Recovery, follow
these steps:

1. Identify the problem
2. Identify the transactions causing the problem
3. Identify available recovery points
4. Identify the relative cost of UNDO versus PIT + REDO

(Strategy Selection)
5. Identify the cost of performing additional operations to resolve

any integrity issues caused by UNDO.
6. Choose the optimal recovery strategy: PIT, PIT+REDO, or UNDO
7. Generate the recovery job(s)
8. Execute the recovery job(s)

TRANSACTION RECOVERY SOLUTIONS

The Transaction Recovery solution should address all of the prob-
lems associated with quickly analyzing problem transactions, deter-
mining the scope of the recovery, getting information to determine the
best recovery method, and managing recovery resources that result in
optimal recovery performance. Such a solution should provide:

� A single point-of-control over each stage of the recovery
process. A single interface for the entire Transaction Recovery
solution minimizes the difficulty of analyzing, generating, and
executing the recovery. Switching from one interface to another
to accomplish the recovery would introduce needless complexity
to an already volatile situation.

� Sophisticated filters to identify the objects that are affected by
the transaction. It should be possible to identify the transaction
by many different criteria, for example, by correlation ID (batch
job), correlation type (batch, CICS, IMS), plan name, authorization
ID, tablespace name, table name, object identifier (OBID), column
name, update type, or other such qualifying criteria.

� The ability to read and analyze log data to: provide detailed
diagnostic information about the selected transactions, diagnose
the problem and identify where recovery should begin, find all
bad transactions, and generate UNDO and/or REDO SQL.

� Assistance in choosing the optimal recovery method. The solution
must understand the tradeoffs in terms of the scope of the
transaction, the potential impact on the application, and the time
required for each type of recovery to determine whether to perform
PIT, UNDO, or REDO Transaction Recovery.

� Automated job generation to eliminate programming errors.
� Ability to restart the process should the recovery fail anywhere

along the way.
� A high performance ‘capture agent’ to quickly gather the

required elements of the Transaction Recovery.
� A high-speed capability for applying the SQL statements during

the UNDO and REDO processing.

RECOVERY ANALYSIS

Your solution should provide reports on image copy frequency and
Data Change Capture impact to help determine your readiness for
Transaction Recovery. During an actual Transaction Recovery, your
solution must be able to analyze the log for a quiet point. Quiet points
are often used as a beginning point of recovery. You still must determine

if the quiet point found is the correct starting point for the recovery that
you need to perform.

A very important feature of the Transaction Recovery solution is the
ability to assist you in choosing between the various recovery methods.
Once the appropriate transaction definition and recovery information is
collected, a relative work estimate should be prepared for each type of
transaction recovery.

BACKOUT INTEGRITY

Maintaining backout integrity is critical. It must be possible to deter-
mine the feasibility and impact of performing an UNDO or REDO
process. Data may have been changed after the offending application
process was run. Data changes of this nature can have an impact on the
integrity of the data after a proposed Transaction Recovery.

Analysis of the subsequent activity on the database is critical to
determining the feasibility of the recovery. Generally the activity
will conform to known application patterns. It is the responsibility of
the DBA and the application group together to determine the impact
of the recovery on the subsequent work (and vice versa). It may be
possible that through judicious selection of the rows to be processed
and the columns to include that only the data in error can be
processed. For example, if the process in error just updated one or
more columns that have no subsequent activity even if other columns
on the same rows have been updated it should be possible to limit the
generated SQL to just the “bad” columns leaving the rest of the
changes alone.

As a rule of thumb, anomaly analysis will yield one of two outcomes;
either there is little subsequent activity and a transaction recovery is fea-
sible or there is a significant amount of activity and transaction recovery
may be difficult or impossible.

Let’s take a look at several examples of anomalies. Consider the fol-
lowing scenario:

� 08:00 Monday—row is added for a new customer.
� 12:00 Monday—new customer enters a large order.
� 18:00 Monday—new customer provides a new shipping address.

Now, think about the havoc that would be caused if the same transac-
tion that updates the shipping address at 18:00 also accidentally clears the
total orders column for the customer. Simply backing out the transaction
would remove the incorrect data (the total orders column) but it would
also cause you to lose valid data (the new shipping address).

The key to this issue is an understanding of the error. Once it is
understood that the only column in error is the total orders field, the
Transaction Recovery can be made sensitive to that column only.

Let’s look at a more complicated case. Consider the following scenario:

Technical Support | November 2004 ©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

Maintaining backout integrity is critical.
It must be possible to determine the

feasibility and impact of performing an
UNDO or REDO process.



� 08:15 Tuesday—row is added for a new customer
� 09:30 Tuesday—new customer fails a credit check and is deleted
� 09:00 Wednesday—new customer reapplies with updated

information and passes the credit check

In this scenario, what would happen if the job that added the new
customer at 8:15 on Tuesday runs out of sequence, causing numerous
other problems? In this scenario, knowledge of the error alone is insuf-
ficient to understand the implications of backing it out.

The desired result actually is to leave the new customer alone
since the final record in the database is actually correct. If you just
rollback the bad job, the insert of the new customer’s first record
will be turned into a delete that will remove the good record. The
only alternative is to scan the log for any other activity on the new
customer’s record and report it. Once reported, the DBA can ana-
lyze the anomalies and hopefully make some reasonable choices on
how to proceed. The bottom line is that the Transaction Recovery
process needs to take this type of scenario into account, or good
data may be lost.

Let’s look at another case:

� 13:00 Monday—employee receives a pay increase.
� 23:00 Tuesday—employee’s increase is updated in the

PAYROLL table.
� 12:00 Thursday—employee gets the promotion associated with

the pay increase and it is updated into the EMPLOYEE table.

What if the payroll clerk mis-entered some data on Tuesday night
when the employee’s increase was entered into the PAYROLL table
and the error is not discovered until Thursday afternoon?

The timeliness of problem recognition is crucial. The sooner you
recognize a problem, the more feasible Transaction Recovery becomes.
Had the problem with the clerk been recognized on Wednesday prior to
the next payroll run, the problem would have been manageable. By
waiting until Thursday, the possibility of accurately backing out the
bad clerk’s data has decreased significantly. Even if it turns out to be
possible, a great deal of manual effort most likely will be required to
select the set of data to rollback.

If you simply rollback the clerk’s work, both the employee’s pay and
promotion will be lost. You may have planned on re-entering the trans-
actions from Tuesday at 23:00, but did you plan on re-entering all the
other subsequent transactions (such as those from Thursday at 12:00)?

Let’s look at a fourth and final case:

� 14:00 Tuesday—customer submits a loan application
� 23:00 Wednesday—clerk enters the customer’s loan application

into the system
� 09:00 Thursday—loan officer uses the information to grant the

customer’s loan

Consider the impact of an error when the loan application is entered
into the system on Wednesday. If the information is mis-entered, users
who subsequently rely upon the data could make bad decisions. For
example, approving a loan for someone who only qualifies because of
incorrect data.

This example illustrates that regardless of the amount of informa-
tion that is obtained automatically, the human element can introduce
complications. This does not invalidate the usage of Transaction

Recovery to correct the problem, because indeed, any type of simple
data recovery cannot resolve a problem with a human. That is, if the
customer already has spent the loan money, no type of recovery can
get it back!

APPLYING THE SQL FOR
TRANSACTION RECOVERY

Speed is critical for Transaction Recovery. Your Transaction
Recovery solution should use a multi-tasked SQL apply process that
efficiently distributes work among multiple streams for parallel pro-
cessing. The apply process must be restartable should it fail. Workload
balancing by table and partition with respect for referential integrity
constraints and table group should be supported. The high performance
apply should give you the ability to convert from dynamic SQL to static
SQL ‘on the fly’ to enhance performance. Other desirable features
include the ability to process very large volumes of transactions and the
option to apply changes online or in batch.

The apply process should have the capability to react to anomalies
found during the processing of the SQL. A minimum set of capabilities
would include:

� Retry on deadlock situations.
� The ability to log and defer SQL statements with problems

(e.g. inserts where the key is already in the table, updates where
the column values do not match, etc.).

� The ability to ignore any errors and just continue processing.

SUMMARY

Applications are prone to all types of problems, bugs, and errors.
Therefore, Transaction Recovery has become a critical need in any
complete recovery toolbox, especially for e-businesses. The
Transaction Recovery solution chosen must provide:

� Powerful diagnostic features for problem identification
� Automated assistance in choosing optimal recovery method
� Integrated Transaction Recovery analysis, generation, and

apply features
� Features that provide speed, manageability, and accuracy

And with a Transaction Recovery solution in your arsenal, you just
might be able to deliver the availability required to help transform your
company into an e-business.  

Craig S. Mullins is Director of Technology Planning for BMC Software. Craig has
close to two decades of experience in all facets of database systems devel-
opment having worked with DB2 since Version 1. He also has experience
using Oracle, Sybase, and Microsoft SQL Server. Craig is the author of the
book DB2 Developer’s Guide, which contains over 1200 pages of in-depth
technical information on Version 8 of DB2 for z/OS. Craig can be reached via
his web site at http://www.craigsmullins.com.

Technical Support | November 2004©2004 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.


