

2

From A to zIIP
Leveraging the

IBM Specialty
Processor for

Mainframe Cost
Savings

By Craig Mullins

3

Executive Summary
Specialty processors are an IBM enhancement introduced to mainframe users
in the early 2000s. These processors augment a mainframe’s general processor,
allowing organizations to shift certain workloads off the GPU. Why do this? While
there are many reasons, one rises above all others— cost savings.

Mainframe billing can be complex and nuanced, but a general rule is that a sig-
nificant portion of the cost is associated with peak usage rates on the general
processor. Specialty processors aren’t just cheaper to use; they are cheaper
to acquire. The catch, however, is that the workloads that can use a specialty
processor are highly defined and limited.

One of the specialty processors available is the Integrated Information Processor
or zIIP. Like all specialty processors, there are restrictions on the workloads that
can be redirected to the zIIP, and not all eligible applications will run on this pro-
cessor. However, taking the time to understand which can shift workloads to the
zIIP could potentially save your organization hundreds of thousands of dollars.

Allowable zIIP applications include IBM Watson AI services and workloads rang-
ing from Db2 to Java. While moving eligible workloads makes sense, it can also
be extraordinarily valuable to refactor legacy COBOL code to Java to take advan-
tage of the zIIP processor.

However, anyone considering such refactoring is aware that it can be a challenge
in and of itself. Finding the right tools and process for refactoring is critical. Many
automated refactoring applications can’t guarantee exact data output matches
or result in a Frankenstein-like mishmash of COBOL and Java. Transpiling and
cross-compiling applications with CloudFrame can eliminate these challenges,
reducing time and testing and resulting in highly maintainable and data-identical
code that can be shifted to the zIIP.

Of course, without identifying the right workloads to shift, proper planning, and
a thorough understanding of how your organization’s mainframe billing works,
mistakes can still occur. However, by following some practical tips and best
practices and utilizing the right tooling, your organization can realize significant
savings without incurring massive technical debt or being mired in complex
refactoring initiatives.

4

Contents
Executive Summary 3

Understanding Mainframe Specialty Processors: zIIPS and More 5

Digging Into the zIIP: What Does zIIP Eligible Mean? 8

Types of Processing That Can Utilize zIIPs & Why You Want to use zIIPs 11

Java and the zIIP: The 5 Major Benefits 14

Options for Converting from COBOL to Java 17

Common zIIP Usage Mistakes and How to Identify Them 20

Best Practices for zIIP Usage for COBOL and Db2 24

Predictions for the Future of zIIP and Specialty Processors 27

Conclusion 30

5

Understanding Mainframe Specialty
Processors: zIIPS and More
If you are an IT professional who works on IBM z Series mainframes, then you’ve
probably heard about zIIPs and other “specialty processors.” But you may not
know what they are, what they do, and why they exist. With that in mind, let’s
take a brief journey into the world of specialty processors.

Starting in the early 2000s, IBM began introducing several different
types of specialty processors. The basic idea of a specialty pro-
cessor is that it augments the main general-purpose CPUs. Instead
of running all workloads on the general-purpose CPUs, specific
workloads are shuttled to the specialty processors for execution.

Why is this useful or interesting to mainframe customers?
Mainframe pricing and licensing are complex and can be pretty
confusing. The specialty processor workload is not subject to IBM
or (for the most part) independent software vendor (ISV) licensing
charges. As anybody who has ever looked into mainframe software

pricing knows, software cost can be many multiples more expensive than the
hardware cost. Still, at a high level, your organization’s monthly mainframe soft-
ware bill is based on the peak average usage during
the month.

Most mainframe software contracts are tied to the
processor size of the machine on which the software
is to be run. The cost of the software rises as the
capacity on the mainframe rises. But if capacity can
be redirected to a specialty processor, that workload
is not factored into the software license charges. If
enough workload can be redirected to specialty processors, meaningful cost
savings can be realized.

Another benefit of the specialty processors is that they are significantly cheaper
than general-purpose processors. A standard mainframe CP can cost more
than half a million dollars, whereas the list price of a specialty processor is
about a quarter of the cost… and the street price of a specialty processor can
be much less.

Specialty processors can be purchased for a one-time charge per engine, includ-
ing no-charge replacement by faster zIIP engines when upgrading to a new
machine. So many organizations today are augmenting their mainframes with
specialty processors to delay costly upgrades.

If enough workload can
be redirected to specialty
processors, meaningful cost
savings can be realized.

6

But, of course, there is a catch! The specialty processors can only run certain
types of workloads. There currently are three different types of mainframe
specialty processors:

• ICF: Internal Coupling Facility — used for processing coupling facility cycles
in a data-sharing environment.

• IFL: Integrated Facility for Linux — used for processing Linux on System Z
workload on an IBM mainframe.

• zIIP: Integrated Information Processor — used for processing specific types
of distributed workloads.

There used to be a fourth type of mainframe specialty processor, the zAAP, or
Application Assist Processor. Its usage was designed specifically for Java work-
loads and XML parsing. However, late in 2009, IBM provided zAAP workloads to
run on the zIIP, enabling organizations to run zIIP- and zAAP-eligible workloads
on a single type of specialty processor, the zIIP.

The ICF and IFL are designed for specific types of workloads, dedicating coupling
facility workload in the case of the ICF and processing Linux workload in the
case of the IFL. By running these types of workloads on a specialty processor,
the work will not apply to your monthly IBM software charges. The cost benefit
is quite straightforward for these specialty processors. Although the zIIP offers
a similar benefit, many nuances must be understood and considered.

Let’s Talk About the zIIP
The zIIP is a dedicated processor designed to operate asynchronously with
mainframe general processors (GPs). When you activate zIIP processors, some
percentage of the relevant workload can be redirected off the general pro-

cessors onto the zIIP specialty processor. The primary benefit of
redirecting work to the zIIP is that IBM will not impose software
charges on workloads that run on the zIIP.

Careful readers will note the phrase “relevant workload” in the
previous paragraph. Not everything can run on the zIIP, only work-

loads that IBM deems as “new” are permitted. Originally, the zIIP was designed
to support redirecting newer Db2 functionality, but over time the list of what is
considered “new” by IBM has grown. At a high level, the current zIIP-supported
workloads include Java application programs, IBM z/OS Container Extensions
(zCX), IBM Watson Machine Learning for z/OS, IBM z15 System Recovery Boost,
and some types of Db2 processing (e.g., XML, distributed queries, and some
utilities). Other ISVs also have zIIP-enabled products, which enables portions
of those workloads to run on zIIP processors.

There are limits to your usage of zIIPs that must be understood. First, there are
limits on the number of zIIPs that can be installed. Originally, there could be no

zIIP

7

more than one zIIP per GP in a central processor complex (CPC). Today, some
models allow two zIIPs per GP. Second, IBM’s license agreement restricts the
kind of code that is eligible to run on a zIIP; the code must run in a z/OS enclave
under the control of an SRB (service request block).

Additionally, not all zIIP-eligible workloads will run on the zIIP. It
can be troublesome to understand exactly what, when, and how
much of the workload is being redirected. Nevertheless, the pri-
mary intent of the zIIP is to reduce your IBM software charge, and
the more workload that can be redirected to the zIIP, the more
your monthly cost savings can be.

Synopsis
Specialty processors are here to stay, and they can be used to help reduce your
monthly IBM software license charges and thereby reduce the cost of mainframe
computing. Although specialty processors introduce some complexity into
management and capacity planning, organizations can benefit from exploiting
them. IBM and ISVs continue introducing new offerings and functionality that
can run on zIIPs, enabling organizations to utilize specialty processors for more
varied workloads.

Knowing you can use the zIIP and identifying the right workloads requires under-
standing what zIIP eligible and workload redirection mean.

The primary intent of the
zIIP is to reduce your IBM
software charge

8

zIIP Eligible

Digging Into the zIIP: What Does zIIP
Eligible Mean?
As noted, the zIIP is an “information” processor, where the IIP in its name stands
for Integrated Information Processor. When the zIIP was introduced by IBM in
2006, Db2 Version 8 was the first subsystem to take advantage of the zIIP. Over
the ensuing years, IBM (and other vendors) have enabled additional workload
eligible to be redirected to the zIIP. It stands to reason that the zIIP will be attrac-
tive to Db2 users.

That last sentence brings up two terms that need to be defined: eligible and
redirect. Workload is zIIP eligible when it runs in an enclave SRB. While we’ll delve
into this more in later sections, it is essential to understand that only certain

types of workloads are eligible for run-
ning on the zIIP. And there is the term
“redirect.” Simply because a workload
is zIIP eligible does not mean it will run
on the zIIP. The workload must be redi-

rected from the general-purpose CPU to the zIIP, meaning that the system tries
to run the workload on the zIIP, which may or may not happen.

Only specific types of workloads are eligible to be redirected to zIIPs. Let’s con-
sider those.

The first set of zIIP eligible workloads to consider is from a Db2 for z/OS per-
spective. The following types of Db2 workload can benefit from zIIPs:

• Remote SQL requests using DRDA to access Db2, including JDBC and ODBC
access to Db2, and native REST calls made over HTTP. This includes native
SQL stored procedures that run over a DDF distributed connection. Up to
60% of the workload for these Db2 SQL requests is eligible for redirection
to the zIIP.

• Parallel query operations (as identified by the Db2 Optimizer) are typically
used for complex business intelligence query processing like star-schema
parallel query. Up to 100% of parallel query processing is eligible for redirec-
tion to the zIIP but only after reaching a CPU usage threshold. IBM defines
the CPU usage threshold for each type of IBM Z system.

• XML processing performed by Db2, including up to 100% of XML schema
validation and non-validation parsing; and up to 100% of the deletion of
unneeded versions of XML documents.

• Certain IBM Db2 utility processing that maintains index structures. As much
as 100% of the portion of the IBM LOAD, IBM REORG, and IBM REBUILD INDEX

9

utility function is used to maintain index structures and some portions of
the IBM RUNSTATS utility processing, including column group distributed
statistics processing.

• Up to 100% of processing for Db2 system agents processing under enclave
SRBs (service request blocks) that execute in the Db2 master (MSTR) address
space, the Db2 database services address space (DBM1), and the Db2 DDF
address space (DIST). However, P-Lock negotiation processing is not eligible
for redirection to zIIPs. To be clear, this includes many Db2 buffer pool pro-
cesses such as prefetch, deferred write, page set castout, log read, and log
write processing. Additional eligible processes include index pseudo-delete
and XML multi-version document cleanup processing.

Even though the zIIP was initially designed for Db2 workload, IBM has made
several other types of workloads eligible to be redirected to zIIPs. Perhaps
the most significant of these additional workloads is Java application pro-
grams. Applications written in Java using IBM MQ as a Java client, or using IBM
WebSphere Application Server and z/OS MF can redirect workload to zIIPs.

Java is one of the world’s most popular programming languages, especially for
developing enterprise applications in large organizations. It consistently ranks
near the top of the TIOBE index, ranking programming language popularity.
Furthermore, many organizations are modernizing their legacy applications
to use Java as a part of digital transformation efforts. The ability to redirect
Java workload from general-purpose CPUs to zIIPs can provide significant cost
savings to organizations with heavily used Java applications.

Additional types of workloads that are zIIP eligible include:

IBM z/OS Container Extensions (zCX), which enable the deployment of Linux
applications as Docker containers on z/OS as part of a z/OS workload, are eli-
gible to be redirected to zIIPs. IBM zCX is another key contributor to the legacy
modernization efforts of many organizations.

Organizations embracing AI can take advantage of the zIIP eligibility of IBM
Watson Machine Learning for z/OS and Apache Spark for their AI and related
workloads, which are growing in most large organizations.

Finally, zIIPs provide a significant boost to IBM Z system resiliency. The IBM
System Recovery Boost function on the IBM z15 (and later) will utilize zIIPs as
part of its processing to reduce the time needed to shut down and restart a
system for outages. Furthermore, IBM z/OS Communications Server exploits
the zIIP for portions of internet protocol security (IPSec) network encryption
and decryption, as well as for select HiperSockets large message traffic. And
IBM z/OS Global Mirror delivers DFSMS System Data Mover processing for zIIPs.

Some third-party independent software vendors (ISVs) have zIIP enabled some
of their products, too. Check with your ISV software providers on what zIIP capa-
bilities and plans are available for the products you use.

https://www.tiobe.com/tiobe-index/

10

The Bottom Line
Multiple types of processing can run on the zIIP, helping to reduce the cost of
your monthly IBM software bill. Remember that even with zIIPs installed, all
potential workloads will not be redirected to the zIIP – only a percentage of it.
Some people refer to the amount of workload that can be redirected as the IBM
“generosity factor.”

Now that you understand the zIIP better, it’s time to look closely at what makes
a workload eligible. You’ll then better grasp what zIIPs could mean for your
organization.

11

Types of Processing That Can Utilize
zIIPs & Why You Want to use zIIPs
Let’s dig a little deeper into what makes a workload eligible for running on zIIPs,
and look at why you would want to exploit zIIP processors for your workloads.

TCBs and SRBs
To fully comprehend what can and cannot run on a zIIP, we need to discuss TCBs
and SRBs. Many Db2 DBAs and performance analysts first heard about TCBs
and SRBs in an IBM performance class, but not everyone has taken one of those
classes. And even for those who have, a refresh is probably in order.

For mainframe z/OS programs, code can execute in two modes: TCB mode, also
known as task mode, or SRB mode. Most programs execute under the control of
a task. Each thread is represented by a TCB or Task Control Block. A program can
exploit multiple processors if composed of multiple tasks, as most programs are.

An SRB, or Service Request Block, is a control block that represents a routine
that performs a particular function or service in a specified address space. SRBs
are lightweight and efficient but have some limitations. Although an SRB is simi-
lar to a TCB in that it identifies a unit of work to the system, an SRB cannot “own”
storage areas. SRB routines can obtain, reference, use, and free storage areas,
but a TCB must own the areas. Operating system facilities and vendor programs
typically use SRB mode to perform certain performance-critical functions.

In general, z/OS will dispatch Db2 work in TCB mode if the request is local or in
SRB mode if the request is distributed. These parallel tasks are assigned the
same importance as the originating address space.

Preemptable enclaves are used to do the work on behalf of the originating TCB
or SRB address space. An enclave is a construct that represents a transaction
or unit of work. Enclaves are a method of managing mainframe transactions
for non-traditional workloads. You can think of an enclave as an anchor point
for resource accumulation regardless of where the transaction is executing.

It is relatively easy to map the resources consumed to the actual transaction
doing the consumption with traditional workloads. But with non-traditional
workloads – web transactions, distributed processing, etc. – it is more difficult
because the transaction can span platforms. Enclaves are used to overcome this
difficulty by correlating more closely to the end user’s view of the transaction.

IBM Performace

12

So even though a non-traditional transaction can comprise multiple “pieces”
spanning many server address spaces and can share those address spaces
with other transactions, the enclave gives you more effective control over the
non-traditional workload.

Enclaves are grouped by common characteristics and service requests, and
since they are preemptable, the z/OS dispatcher – and Workload Manager – can
interrupt these tasks for more important ones. There are two types of preempt-
able SRBs: client SRBs and enclave SRBs.

From a Db2-perspective, if the request
is distributed DRDA workload, then it
will be executed in enclave SRBs. If the
request is coming over a local connec-
tion, then it will be dispatched between
TCBs, client SRBs, and in some cases,
enclave SRBs (such as for parallel que-
ries and index maintenance).

An SVC, or a supervisor call instruc-
tion, is a processor instruction that directs the processor to pass control of the
computer to the operating system’s supervisor program. Because zIIPS must
run under an SRB, many commonly used z/OS services (used by TCBs) are not
available; specifically, SVC calls other than ABEND. But we are getting deep into
the weeds here, and these detailed nuances are more important for software
engineers writing code for zIIPs than those using them.

Why use zIIPs?
Let’s take a moment to circle back and answer the fundamental question: why
should I use zIIPs? And the simple answer is cost reduction.

When work is redirected to, and then runs on, a zIIP instead of a general-pur-
pose CP, that workload is not included in the MSU metrics for MLC software
charges. Now that was a mouthful, so let’s ensure we understand what we’re
talking about. First, the term MSU is an acronym for million service units. MSU

has replaced MIPS (Millions of Instructions Per Second) as the
standard measurement for mainframe capacity and consumption
(see MSU versus MIPS). An MSU is a measurement of the amount
of processing work that can be performed in an hour. One “ser-
vice unit” originally related to an actual hardware performance
measurement, but that is no longer the case; a service unit is an

imprecise measurement. Nevertheless, IBM publishes MSU ratings for every
mainframe model, so MSUs are used for modern mainframe capacity and work-
load measures.

Workload
MANAGER

Why use zIIPs? — the simple
answer is cost reduction

https://www.techtarget.com/searchdatacenter/definition/supervisor-call
https://www.techtarget.com/searchdatacenter/definition/supervisor-call
https://smtdata.com/blog/how-well-is-your-mainframe-outsourcer-managing-capacity-and-performance-part-2-understanding-mips-and-msu/#:~:text=MSU%20is%20a%20metric%20that,on%20factors%20determined%20by%20IBM.

13

The next term mentioned above without definition was MLC, which stands for
Monthly License Charges. This refers to a specific category of mainframe soft-
ware that is billed and paid for every month. Your organization will produce a
report of each month’s consumption and submit it to IBM. This report dictates
your IBM software bill, based on usage, for your IBM MLC products. Some of the
most common MLC products include z/OS, Db2, CICS, IMS, MQSeries, and COBOL.
Specific pricing and terms and conditions for IBM MLC products are based on
the pricing metric in your IBM contract(s). There are more details behind the

scenes, but this is a sufficient overview for now.

So, what does all of this mean? Well, the workload that
gets run on zIIPs does not get counted on your monthly
processing capacity. Therefore, your software bill can be
reduced, perhaps significantly, by using zIIPs. It would be
remiss not to mention that there is also a hardware cost
reduction because a zIIP costs considerably less than a
general-purpose CP. So, when you use zIIPs to run work-
loads, they are being run at a reduced hardware cost.

An additional consideration on why you should use zIIPs is that, at times, they
can provide a performance gain. Depending on the type of mainframe you use,
the general-purpose CP may be kneecapped, meaning that processing power
is artificially constrained. But the zIIP(s) you add to your system are never knee-
capped. Consequently, the workload redirected to the zIIP may outperform the
same workload if it were to run on the general-purpose (kneecapped) CP.

There are many factors to consider when under-
standing zIIPs and determining why and how best
to use them. But, once you have a better understand-
ing, you recognize they can play a valuable role in
reducing or avoiding mainframe cost. Of course, as
we’ll see, cost savings is just the tip of the iceberg
regarding the benefits zIIPs offer, especially when used with Java applications.

Monthly
Licence
Charges

Common MLC products
include z/OS, DB2, CICS, IMS,
MQSeries, and COBOL

14

Java and the zIIP: The 5 Major Benefits
Java applications are one of the most important workload types that are zIIP
eligible. These applications are inherently new compared to existing legacy
mainframe code and therefore qualify for zIIP usage and offer a host of other
benefits.

Before we delve into the benefits of Java, let’s face it, the predominant language
used by most mainframe applications is COBOL. According to Reuters, there are

over 220 billion lines of COBOL code running production
workload. That’s a lot! But there are issues with COBOL as
it is not taught in university computer science curricula,
is a procedural language that is no longer in vogue, and is
quite verbose. That said, lots of COBOL code exists and
continues to work well.

Nevertheless, not much new work is being done using COBOL. Many new main-
frame applications are written in Java, perhaps due to the following benefits.

1 — Reduced Cost
The first, and most important benefit, is that using Java
can help you reduce your monthly IBM software bill. Java
workload is zIIP eligible, and any Java workload that
gets redirected to run on the zIIP will not be chargeable
against your monthly bill.

As discussed in earlier sections, work that runs on a
zIIP instead of a general-purpose CP is not included in
the MSU metrics used to calculate your monthly MLC
software charges. These metrics are calculated as a
rolling four-hour average (R4HA) of LPAR MSU usage. The
monthly LPAR peak of the R4HA, by product, determines
your software bill. That means you are paying for capacity on a rolling four-hour
average, not on the maximum capacity of your system or the maximum capacity
utilized at any given time.

So easy enough, if you are adding Java workload (or converting existing work-
load to run on a JVM) and that work is redirected to and runs on a zIIP, it is not
contributing to your R4HA or your monthly software bill. And the cost of the zIIP
hardware itself is much less than the CPU the workload would run on if it were
not zIIP eligible, meaning the cost savings are accumulated for multiple reasons.

Therefore, running Java instead of other types of work can significantly con-
tribute to cost savings.

COBOL
Benefits
1. Reduced Cost

2. Easier Support

3. Code Maintenance

4. Speed?

5. Portability

15

2 — Easier to Support
The next benefit of Java is that it can be easier to support than COBOL for var-
ious reasons. As we alluded to earlier, COBOL is aging, as are the programmers
capable of coding and maintaining it properly. Of course, COBOL’s age is not the
problem; plenty of older things remain viable and thrive. And COBOL has not
stayed static, stuck in the 1950s when it was developed. Nevertheless, skilled
COBOL developers are not easy to find.

On the other hand, Java is a newer, thriving language. First released in 1995, Java
can’t be called shiny and new. Still, it is modern because it is object-oriented,
taught in most college computer science programs, and is one of the world’s
most popular current programming languages. Java regularly ranks in the top
three languages of the Tiobe Index, which tracks the popularity of computer
programming languages.

3 — Code Maintenance
An easy-to-understand and -maintain code base is important to ensure effec-
tive application development and support. From the perspective of converting
COBOL code to Java, though, this may be easier said than done. You agree that
there is merit in converting some of your COBOL programs to Java, but how?
Nobody has the time (or budget) to sit down a recode their applications line by
line!

Converting from any programming language
to another is a complex task that takes a
long time and results in less-than-satisfying
results. Without care and expertise, the con-
verted code will not be efficient and is unlikely
to take advantage of all the features of the
target programming language. Even a derisive term, JOBOL, has been created
to describe COBOL code that did not effectively convert to Java. In other words,
it may be Java, but it still looks and feels like COBOL.

The key is to use conversion services built to understand how to convert from
a procedural language like COBOL to an object-oriented language like Java.
This is where an automated tool comes in handy. The CloudFrame Renovate
and Relocate products provide code conversion tools, automation, and DevOps
integration to deliver very maintainable, object-oriented Java that can integrate
with modern technology available within your open architecture. It can be used
to refactor COBOL source code to Java without changing data, schedulers, and
other infrastructure components. It is fully automated and seamlessly integrates
with the change management systems you use on the mainframe.

JOBOL

https://www.tiobe.com/tiobe-index/
http://cloudframe.com/

16

CloudFrame improves the business value of modernization by driving down the
risk and effort required. Using CloudFrame services, you can convert COBOL
to refactored Java that a Java programmer can work with effectively. In other
words, it’s not JOBOL. The Java code generated by CloudFrame will operate the
same as your COBOL and produce the same output.

You can even use CloudFrame to refactor your COBOL to Java but keep main-
taining the code in COBOL. Such an approach can allow you to keep using your
COBOL programmers for maintenance and gain the zIIP eligibility of Java when
you run the code.

4 — Speed?
Everybody knows that Java is slow, right? That is one of those common knowl-
edge items passed around from mainframer to mainframer for so long that few
question it. This may have been true a decade ago, but today, sometimes Java
can run as fast as or even faster than COBOL.

Some CloudFrame customers have found that the refactored
Java ran faster than the COBOL from which it was converted. Of
course, this is not to say that Java will consistently outperform
COBOL, just like it is not fair to say that COBOL will consistently
outperform Java.

Another consideration: if the Java code runs on a zIIP, and your main CPU is a
kneecapped model, then the higher speed of the zIIP, which is never kneecapped,
may cause your Java code to run faster than the equivalent COBOL.

5 — Portability
The final benefit of Java is its portability. A Java program can be easily trans-
ported from one environment to another because the Java source is compiled
into bytecodes. The Bytecodes generated can be run on any machine with a JVM.

Summary
There are numerous benefits to modernizing your mainframe workload to run
on Java. Among these benefits are reduced cost, easier support and mainte-
nance, similar or better performance, and expanded portability. Java can open
up your strategic options for mainframe usage and budget management. The
next question is - what are your options for making better use of Java within
your ecosystem?

Java in the zIIP may run
faster that the equivalent
COBOL in GPP

17

Options for Converting from COBOL
to Java
The combination of Java and zIIPs offer significant benefits, including cost-re-
ducing, simplifying support and maintenance, delivering the performance you
need, and improving portability. But most enterprise mainframe applications
are written in COBOL.

Now, most organizations are not likely to embark on a full-fledged campaign to
convert all of their COBOL to Java. But converting some programs to Java can
make sense if you use the proper approach.

COBOL is Still Prevalent in Large Enterprises
Unless you work in a mainframe environment, it might surprise you that COBOL
is still being used. But it is. And its usage is significant!

COBOL was designed for business data processing, and it is exceptionally well-
suited for that purpose. It provides features for manipulating data and printing
reports that are standard requirements for business. COBOL was purposely
designed for applications that perform transaction processing like payroll, bank-
ing, airline booking, etc. These are programs where you put data in, process
that data, and send a result.

COBOL was invented in 1959, so its history stretches back over 60
years; that’s a lot of time for organizations to build complex appli-
cations to support their business. Over the years, IBM has delivered
new capabilities and features that enable organizations to stay
updated while maintaining their application portfolio. The current
situation is that COBOL is in wide use across many industries.

Most global financial transactions are processed using COBOL, including 85
percent of the world’s ATM swipes. According to Reuters, almost 3 trillion dollars
in DAILY commerce flows through COBOL systems! The reality is that more than
30 billion COBOL transactions run every day. And there are more than 220 billion
lines of COBOL in use today.

But COBOL applications face many challenges as experts in the
field retire, and new developers are not trained in procedural
languages like COBOL. Instead, colleges teach object-oriented
languages, like Java. So new applications are commonly written
in Java, even as legions of older applications remain in COBOL.

Even if converting everything at once from COBOL to Java would be too mon-
umental of a task for most organizations, converting some COBOL to Java can
make a lot of sense. It all boils down to your mindset and needs. The question
to ask yourself is, “What type of fool are you?”

1959

30 billion COBOL
transactions run
every day.

https://thenextweb.com/finance/2017/04/10/ancient-programming-language-cobol-can-make-you-bank-literally/
https://thenextweb.com/finance/2017/04/10/ancient-programming-language-cobol-can-make-you-bank-literally/
https://quoteinvestigator.com/2017/02/02/old-good/#:~:text=Anonymous%3F,praises%20everything%20that%20is%20new

18

An old adage states: There are two different types of fools. One naively embraces
and extolls everything old; the other credulously praises everything new. Do you
embrace COBOL or praise Java? You can and probably should avoid being either
type of fool by doing both! Yes, COBOL and Java can co-exist, perhaps for a long
time, as you migrate to Java.

The Challenges of Maintaining COBOL
As you put your plan together, you might consider converting some of your COBOL
applications to Java. An upcoming event (such as the end of support for a COBOL
compiler or a wave of retirees hitting your development staff) may offer a ripe
opportunity for converting.

Or you may want to take advantage of the benefits
discussed in the last section, such as lower cost
of running your applications, better portability,
and improved application support. Nevertheless,
converting to Java is a viable option, and many orga-

nizations are considering doing so, at least for some of their programs.

Keeping in mind the concerns about “all-or-nothing” conversions, most organi-
zations will be working toward a mix of COBOL migrations and Java conversions,
resulting in a mixture of COBOL and Java for their application portfolio.

As you plan for this, analyze and select appropriate candidate programs and
applications for conversion to Java. Some tools can analyze program func-
tionality to assist you in choosing the best candidates. For example, you will
probably want to avoid converting programs that call other COBOL programs
and programs that use pre-relational DBMS technologies, at least initially.

Converting COBOL to Java: Transform and Cross-Compile
At this point, you may be thinking, “Sure, I can see the
merit in converting some of my programs to Java,
but how can I do that? I don’t have the time for my
developers to re-create COBOL programs in Java
going line-by-line!” But manual conversion is only
one option, and it is by far the least desirable.

Using an expert toolset to automate code conversion
makes a lot more sense. Using CloudFrame technol-
ogy, you can perform two types of automated coded conversion: transform and
cross-compile.

With transform, COBOL source code is automatically refactored into Java with-
out changing data, schedulers, or other infrastructure components. It is fully

COBOL & Java Can...

Using CloudFrame technology,
you can perform two types of
automated coded conversion:
transform and cross-compile.

co-exist

19

automated and seamlessly integrates with the change management systems
you use on the mainframe.

The Java code generated by CloudFrame will operate the same as your COBOL
and produce the same output. You can even use options to maintain the COBOL

4.2 treatment of data, thereby avoiding
the invalid data issues that can occur
when you migrate to COBOL 6. This
can help to reduce project testing and
remediation time.

Perhaps even more importantly, the Java source code generated is Java, not
a Frankenstein monster Java/COBOL combination that some folks refer to as
JOBOL. The goal is to create Java code that Java developers will recognize
as Java and be able to support without knowing any other legacy program-
ming languages. Java code generated by CloudFrame regularly earns an “A”
rating when processed by SonarCube code quality scoring (such as reported in
this customer case study).

Using CloudFrame to transform and refactor your COBOL code to Java is a viable
automated route for migrating to code that can be supported and maintained
by Java programmers. Another option that may be more palatable to long-time

COBOL shops is the CloudFrame cross-compile
option.

With cross-compile, you can use CloudFrame to
refactor the COBOL to Java but keep maintaining
the code in COBOL. The source code is COBOL, but
it is cross-compiled to run in a JVM, making the
workload zIIP-eligible. This approach is more fully

described in this blog post (Consider Cross-Compiling COBOL to Java to Reduce
Costs). It is also an excellent capability for shops with a lot of COBOL who are
not comfortable refactoring everything to Java. You keep your COBOL until you
are ready to shift to Java. You can quickly fall back to your COBOL load module
with no data changes. The Java data is identical to the COBOL data except for
date and timestamp.

Simply stated, CloudFrame offers automated software for refactoring COBOL
code to Java and running using only Java. Or, if you are comfortable with your
ability to support and code your applications in COBOL but are looking for the
cost-savings that zIIPs can provide, then CloudFrame’s cross-compile capabil-
ities may be just what you are looking for.

Still, planning to move code to the zIIP doesn’t remove all of the possible mis-
takes that can be made, especially when it comes to assumptions about what
will work on the zIIP, planning for shifting workloads, and understanding exactly
where your cost savings will come from.

Refactor

You can use CloudFrame to
refactor the COBOL to Java but
keep maintaining the code in
COBOL.

https://www.sonarqube.org/
https://cloudframe.com/wp-content/uploads/2021/07/CloudFrame-Renovate-Customer-Case-Study-2021.7.pdf
http://db2portal.blogspot.com/2020/06/consider-cross-compiling-cobol-to-java.html
http://db2portal.blogspot.com/2020/06/consider-cross-compiling-cobol-to-java.html

20

Common zIIP Usage Mistakes and How to
Identify Them
Many organizations using the IBM System z have begun to use zIIP processors
to help reduce the overall cost of their mainframe environment. But there are
some pitfalls that should be avoided.

Assuming Everything Will Run on the zIIP
One of the biggest mistakes you can make is assuming that everything that is
eligible to run on the zIIP will actually run on the zIIP. Although this may seem like
a reasonable assumption, it neglects to take into account what is sometimes
referred to as the Generosity Factor.

When you activate your zIIP processor, some percentage of the relevant workload
will be redirected off the main CP onto the zIIP – but not 100% of the workload.
When an enclave is created by a product you are using, a parameter can be

set to impact the CPU percentage that z/OS can make eligible to
run on the zIIP. Think of this percentage as the Generosity Factor
because it tells the system how generous to enable the workload
for the enclave to be eligible for zIIPs.

For example, if you look at the IBM Db2 12 for z/OS documentation
in the section titled “Authorized zIIP uses for Db2 processing,” you
will see the following:

“SQL request workloads that use DRDA to access Db2 for z/OS® over TCP/IP
connections and native REST calls over HTTP. Up to 60% of the Db2 for z/OS
instructions execute such SQL requests
when running in Enclave SRB Mode and
accessing Db2 for z/OS.”

This means that the generosity factor
for distributed SQL requests in Db2 is
60%. There is a bit of nuance to how
this is implemented, but the net result
is that you will only get up to 60% of this
workload to run on zIIPs.

Digging deeper into the documentation, you will see that other types of pro-
cessing will have different generosity factors. For example, up to 100% of
parallel query child processing can be run on the zIIP (after reaching a CPU
usage threshold).

So far, we have discussed the generosity factor for Db2, which is an IBM product.

Mistakes
Lack of Planning

Lack of Understanding

Generosity
FA C T O R

21

But ISVs also can make workloads run by their products zIIP-eligible. ISVs that
zIIP enable workload using enclave SRBs are not typically going to throttle the
redirection of their workload like IBM does. Although the API provides an option
to set a “generosity factor,” it is uncommon to be anything other than 100 percent.
That said, be sure to understand how each of your
ISV products works regarding zIIPs, including if they
set a generosity factor other than 100%.

It is essential to understand that not everything zIIP
eligible can or will run on the zIIP. Another common
mistake is not understanding that it is not possible to specifically direct the
workload to run a zIIP. The workload can be specified as zIIP-eligible, but the deci-
sion whether to run on the zIIP or not is made at execution time by the Workload
Manager (WLM).

Why might zIIP-eligible work not be run on the zIIP? Perhaps there are no zIIPs
installed and available to be used. Or maybe the zIIPs that are available are all
busy. Or, as we just discussed, perhaps the generosity factor comes into play.
Although the workload is eligible, it falls outside the permitted percentage for
this specific type of work.

Lack of Planning
As with most things, proper planning and preparation will go a long way toward
successfully implementing zIIPs in your organization. Perhaps the most signif-
icant thing to consider is how much workload you will have that is zIIP-eligible
and how many zIIPs you will need to deploy to support that workload.

Of course, Db2 is most likely to be the primary consumer of zIIP capacity, but
don’t forget other workloads such as Java, zCX container extensions, and XML
processing. IBM publishes a nice list of zIIP-eligible software you should consult
and compare to your environment’s needs.

Once you know your zIIP potential, you must ensure sufficient zIIP capacity to
process it. The more zIIP-eligible workload you have, the more zIIPs you will
need to process it effectively.

Another consideration that is sometimes not handled appropriately is setting
the IIHONORPRIORITY parameter correctly. IIHONORPRIORITY is a z/OS system
setting that is maintained in the IEAOPTxx parmlib. There are two options: YES
and NO.

Setting IIPHONORPRIORITY to YES indicates that standard CPs may execute
zIIP-eligible and non-zIIP-eligible work in priority order - if zIIP processors are
unable to execute all zIIP-eligible work. YES is the default.

On the other hand, if you specify IIPHONORPRIORITY=NO, work will not receive
help from standard processors when there is insufficient zIIP capacity. This
means that most work will wait for zIIP capacity to become available. There

Not everything zIIP eligible can
or will run on the zIIP.

https://www.ibm.com/downloads/cas/6VYXGE34

22

is a caveat: standard CPs can help when necessary to resolve contention for
resources with non-zIIP processor eligible work.

The fundamental tradeoff is performance versus cost. You deploy zIIP
processors to save money, so directing workload to the processors
and keeping it there might seem to make sense. However, the potential
performance implication is considerable, and therefore not only is YES
the default, but it is the recommendation.

The best practice approach is to ensure sufficient capacity (for both
zIIP and general-purpose CPs) to process your workload, set Honor Priority to
YES, and monitor the situation, so there is minimal need to redirect workload
from zIIPs back to your general-purpose CPs.

Lack of Understanding
The last common mistake we’ll discuss here is a lack of understanding. To fully
appreciate the cost-savings potential of zIIPs, you need to understand how IBM
MLC software pricing and billing works. Of course, this is a complex topic that
requires more that is outside of the scope of this eBook. So, instead, below,
you’ll find some advice.

The first thing you need to know is which IBM pricing metric is in place at your
organization. If your shop uses a full-capacity metric or tailored-fit pricing, then
every MSU you can redirect from the general-purpose engine to a zIIP can save
you money. On the other hand, things become more difficult if you are using a
sub-capacity metric.

There are numerous sub-capacity pricing metrics offered by IBM, including
WLC, AWLC, EWLC, AEWLC, MWLC, and zNALC. At this point, don’t worry too
much about the acronyms and what they mean. The
general idea for sub-capacity pricing is that you pay
based on your MLC software’s peak, monthly roll-
ing-four average (R4HA) usage (by LPAR). IBM MLC
software includes most system software, compilers,
and selected system management tools.

The R4HA is calculated based on system utilization in MSUs. Each IBM machine
has an MSU rating. This capacity is consumed by the LPARs and applications on
the machine on an on-demand basis. As application consumption is based on,
often unpredictable, demand, CPU/MSU may be very high or low at any moment
in time. To allow for these brief spikes in consumption, IBM calculates the R4HA
every five minutes. Each hour, the system takes the average of these 12 five-min-
ute values. After four hours, the system will have an actual “Four-Hour Average”.
As the system runs, the calculation continues to “roll,” so you have a continuously
updated Rolling Four-Hour Average (R4HA). Each month, via the SCRT report,

You deploy zIIP
processors to
save money

R4HA

https://www.ibm.com/docs/en/zos/2.3.0?topic=framework-monthly-license-charge-mlc-software-pricing

23

your organization reports the peak R4HA utilization to IBM, and a bill is generated
based on that report.

So, with sub-capacity pricing, redirecting workload to zIIPs may or may not
impact your monthly IBM software bill, depending on whether the workload
is shifted during a peak. This means that sometimes using zIIPs will save you
money, and sometimes they won’t!

Earlier, we mentioned tailored-fit pricing with full-capacity pricing. Tailored-
fit pricing is not exactly a complete capacity metric. It is not based on an R4HA
peak. Therefore, any zIIP redirection from general-purpose CPs to zIIPs will save
you money, eventually, when you use tailored-fit pricing.

The Bottom Line
To benefit from zIIPs, you need to understand what they offer and how they work
and plan appropriately for your organization’s workload and pricing agreement
with IBM. In our penultimate section, we’ll examine some best practices and prac-
tical tips for utilizing your zIIP processor to realize the greatest benefit from it.

https://www.ibm.com/it-infrastructure/z/pricing-tailored-fit

24

Best Practices for zIIP Usage for COBOL
and Db2
Having looked at what the zIIP is, how it can be used, how a modern language like
Java can be leveraged on it, and what the most common mistakes when utilizing
the zIIP are, it’s time to consider best practices to make your zIIP usage a reality.

Why do this?
As we have discussed in prior sections, the primary reason to work on redirecting
workload to zIIPs is to reduce cost. Workloads on the zIIP are not chargeable
against your monthly IBM software bill. So, exploiting your installed zIIPs can
result in significant cost savings.

How to do this?
Knowing how to improve your zIIP usage is actually pretty simple. It involves
understanding what is zIIP-eligible and coding your applications to promote that
type of usage. Your actual COBOL processing is not zIIP-eligible, but many types
of activities enacted by your COBOL program can be zIIP-eligible.

Let’s dig into the opportunities for zIIP usage in Db2 (with a COBOL mindset).

The first important thing is to review and stay up to date on the types of Db2
workloads that are zIIP-eligible. IBM maintains a list of what is zIIP-eligible. As
of Db2 12 for z/OS, the list of authorized Db2 zIIP usage can be
found here.

Design your new COBOL programs and applications for dis-
tributed processing. SQL requests that use DRDA to access
Db2 for z/OS over TCP/IP connections are zIIP eligible, with up
to 60% of their instructions running on the zIIP. Similarly, pro-
grams issuing native REST calls over HTTP fall into the same category, with up
to 60% being zIIP-eligible. Although it is not extremely common, it is possible
to call a REST API from COBOL. Or you might choose to forgo COBOL for REST
calls instead of relying on z/OS Connect or another approach.

So, the first thing to consider is how the application is being designed and how
it will run. Using distributed SQL calls is probably the first, best thing that you
can do to get COBOL programs to take advantage of your installed zIIP capacity.

But not everything can, or indeed should, be run as a distributed SQL request
(or REST API call). Fortunately, other types of processing can be run on the zIIP.
Db2 parallel query child processes for long-running parallel queries can also
be run on zIIPs. There is a threshold after which up to 100% of these processes
can be run on the zIIP.

Workloads on the zIIP are
not chargeable against your
monthly IBM software bill.

https://www.ibm.com/docs/en/db2-for-zos/12?topic=db2-authorized-ziip-uses-processing

25

So how can you encourage parallelism? There is no way to explicitly say, “This
query must use parallelism.” Instead, when the query is bound (either stati-
cally or dynamically), the Db2 Optimizer decides if parallelism will be beneficial
and, therefore, potentially used to satisfy the query request. At bind time, you
can tell Db2 to consider using parallelism. For static SQL, you must code the
DEGREE(ANY) parameter when you BIND or REBIND. You must set the CURRENT
DEGREE special register for dynamic SQL to ‘ANY’. It is also possible to change
the CURRENT DEGREE special register default from 1 to ANY for an entire Db2
subsystem by setting the value of the CDSSRDEF DSNZPARM parameter. This
DSNZPARM sets the default for dynamic SQL only.

Keep in mind that parallelism is used for read-only queries only. Therefore, it
makes sense to identify cursors that are read-only. If you bind your program
using CURRENTDATA(YES) and Db2 cannot tell if the cursor is read-only, Db2 will
not consider parallelism. Therefore, to optimize parallelism, it is a good practice
to specify FOR READ ONLY or FOR FETCH ONLY for every CURSOR that will be
used for reading data only.

Furthermore, queries run against partitioned table spaces will cause the Db2
Optimizer to more strongly consider parallelism. However, partitioning is not
explicitly required for Db2 to invoke parallelism.

Many IBM Db2 utility processes are also zIIP-eligible. For example, up to 100% of
the index maintenance tasks for LOAD, REORG, and REBUILD INDEX are zIIP-eli-
gible. Portions of the RUNSTATS utility is also zIIP-eligible, but this typically has
little to do with COBOL. So how can COBOL developers take advantage of the
zIIP eligibility of IBM Db2 utilities?

One tactic to consider is to avoid creating COBOL
programs that perform many Db2 SQL INSERTs and
instead use the LOAD utility. Of course, if the pro-
gram only inserts a few rows, then the LOAD utility
is probably not the best solution. Additionally, if a lot
of pre-processing or other activity is required before

the data can be inserted, then the LOAD utility may not be suitable.

Using the LOAD utility is worth considering if you have a large data set of records
that need to be read and inserted into a table. The LOAD utility is very efficient,

parallelism

The LOAD utility is very efficient, and
the index maintenance needed is all
zIIP-eligible

26

and the index maintenance needed is all zIIP-eligible. This is not the case for
COBOL programs performing INSERTs.

Note that other ISVs offer Db2 utilities with varying degrees of zIIP eligibility.
So, if you have Db2 utilities from BMC, Broadcom, or InfoTel be sure to consult
their documentation for details on their zIIP exploitation.

If your program is processing XML data, this too can be zIIP-eligible. Up to 100%
of XML schema validation and non-validation parsing and up to 100% of the
deletion of unneeded versions of XML documents can be run on the zIIP.

Another consideration to keep in mind is that as your COBOL programs run and
access Db2 data, many other incidental Db2 system tasks and work may be
zIIP-eligible.

Up to 100% of the work done by Db2 system agents
processing under enclave SRBs that execute in
the Db2 MSTR, DBM1, and DDF address spaces is
zIIP-eligible with a few exceptions. So, things that
Db2 does during normal operations, like buffer
pool processing and log operations, can be run
on the zIIP as your COBOL programs run.

When it comes to sorting, IBM DFSORT workload is not zIIP-eligible. IBM does
market a product called Db2SORT that works with Db2 utilities to zIIP enable
some of the sort processing used by utilities. But none of that helps sorting for
use by COBOL programs. However, if you have a lot of data to sort before pro-
cessing it by your COBOL program, you might consider Syncsort (from Precisely)
and the add-on ZPSaver component of Syncsort. It can be used to enable sort,
copy, and SMS compression to be zIIP-eligible. It pays to know what software
you have and whether it is zIIP-enabled!

As a final consideration, if you are not getting sufficient zIIP utilization for your
COBOL programs, you can consider converting to Java, all of which is zIIP-eli-
gible. Of course, this requires significant planning and investment but can be
made easier by using tools like those marketed by CloudFrame to do the con-
version for you.

It pays to know what software
you have and whether it is
zIIP-enabled!

https://cloudframe.com/products-2/

27

Predictions for the Future of zIIP and
Specialty Processors
Throughout this eBook, you’ve read about the current state of specialty pro-
cessors for IBM Z mainframes with a particular concentration on the zIIP. We’ve
looked at what they are, how they work, and why you might want to consider
exploiting them. But in this final section, let’s ruminate on the potential of spe-
cialty processors in the future.

It’s impossible to know specifically what the future holds. But it is possible to
make some observations based on existing practices and usage of specialty
processors. So, of course, the “future” discussed here will be a guess… but it
will be an educated guess!

A Level Set
The first thing to do is to confirm that the need for specialty processors is as
strong or stronger than it has ever been. According to a recent BMC Mainframe
Survey, 86% of the largest mainframe shops expect MIPS to grow in the coming
year. So, with the potential of specialty processors to mitigate cost growth as
capacity increases, it stands to reason that organizations should continue to
utilize them.

Of course, you could make the case that reducing prices could be a more efficient
way to mitigate the cost of mainframe software. When you think about it, the zIIP
is really nothing more than a re-purposed general-purpose CP, with controls that
enable only certain types of workload to run on it. The only real difference is that
a zIIP always runs at full capacity, even if the CPC is kneecapped (meaning that

it is a sub-capacity model designed to run at a lower capacity).

But this is a simplistic way to look at the situation. Specialty
processors are designed to encourage specific workloads –
typically newer ones – to run cheaply on the mainframe. This

enables IBM to reduce the cost of mainframe computing and encourages growing
the footprint of what runs on the platform. Simply lowering prices would not
necessarily accomplish the same thing.

IBM Z Mainframes

A zIIP always runs at full capacity

https://www.bmc.com/info/mainframe-survey.html
https://www.bmc.com/info/mainframe-survey.html

28

The impression given of IBM’s perspective, and this is simply an opinion, is that
decreasing prices overall does nothing to protect the large revenue stream IBM
earns from mainframe hardware and software. By redirecting modern workloads
(where there is much competition) to specialty processors, IBM can decrease
the price of “modern” workloads while protecting the revenue it garners from
“legacy” workloads, such as CICS and IMS transactions and batch programs (for
which there is little to no competition).

An additional consideration is the cost of the specialty processors, which are
much lower than the cost of a standard CP. And that means that specialty pro-
cessors can reduce both software and hardware costs!

Types of Specialty Processors
Keep in mind that there are three different types of mainframe specialty pro-
cessors: ICF (Internal Coupling Facility), IFL (Integrated Facility for Linux), and
the one we’ve talked about the most, zIIP (Integrated Information Processor).
We chatted about the purpose of each of these in the first section.

For the purposes of reflecting on their future, those are the specialty proces-
sors we will consider. Nevertheless, on IBM Z servers, there are some processor
units (PUs) that are part of the system base but are designed for specific pur-

poses. They include the System Assist Processor (SAP) used by
the channel subsystem, the Integrated Firmware Processor (IFP)
used in support of select features, and two spare PUs that can
transparently assume any characterization during a permanent
failure of another processor unit.

Then there is the IBM Integrated Accelerator for Z Sort. Not tech-
nically a specialty processor, this feature was introduced with the

IBM z15 and helps reduce CPU costs and improve the elapsed time for sorting.
This is accomplished using a new instruction and optimally using virtual, real,
and auxiliary storage.

Although you might want to think of these PUs and features as specialty proces-
sors, they are not exactly like the IFL, ICF, and zIIP, which are separately priced
options. Nevertheless, if you extend the notion of what a specialty processor is,
then it becomes obvious that we will continue to see more specialty hardware
like this being introduced into future IBM Z hardware configurations.

But what about the zIIP and its cohorts?

Looking Into the Future
As we peer into the future to see if, how, and why specialty processors will be
used, we first recognize that many organizations have implemented them and

The cost of the specialty
processors is much lower than
the cost of a standard CP

https://www.ibm.com/docs/en/zos/2.5.0?topic=works-integrated-accelerator-z-sort

29

rely on them. This helps to secure their future, at least somewhat. If IBM were
to consider eliminating specialty processors, it would negate the purpose for
which they were developed, reducing the cost of newer workloads and extending
the viability of the mainframe platform.

So, taking specialty processors away would be difficult unless IBM also created
another way to achieve the same purpose. As long as specialty processors con-
tinue to work and are being used by customers, it is safe to assume that they
will be viable for the long term.

On the other hand, introducing additional specialty processors might be more
practical. For example, as use cases and computing techniques expand for
Artificial Intelligence and Machine Learning, it would not be surprising if an
AI specialty processor is introduced. Security and
cryptography are other areas that might benefit
from specialty processors. But, of course, this is
pure speculation on my part.

You should also keep your eyes on IBM’s pricing poli-
cies and announcements. As pricing metrics change,
the cost patterns and expectations of users change. Therefore, a future pricing
option might obviate the need for specialty processors or, indeed, change the
use cases for which they are designed.

For example, you might consider the impact if your organization changes from a
sub-capacity pricing metric like AWLC to the newer tailored-fit pricing metric.
Although tailored-fit pricing is not exactly a full capacity metric, it is not based on
an R4HA peak. Unlike sub-capacity pricing metrics, where only reduced workload
during peak periods saves money, any zIIP redirection from general-purpose CPs
to zIIPs will likely save you money, eventually, when you use tailored-fit pricing.

The Bottom Line
It appears that the future is bright for specialty processors. There should be
no worry about implementing them today to reduce costs. Of course, it makes
sense to keep an eye on IBM’s announcements and pricing options to ensure
that you are using specialty processors optimally at your site.

TFP

https://www.ibm.com/docs/en/zos/2.2.0?topic=metrics-advanced-workload-license-charges-awlc
https://www.ibm.com/it-infrastructure/z/pricing-tailored-fit

30

Conclusion
Mainframes remain a crucial piece of the ecosystem for many enterprises,
government agencies, and other organizations. The expense of licensing and
utilizing your mainframe is only a portion of the value that it brings to the busi-
ness. At the same time, that doesn’t mean there aren’t ways to create savings
opportunities - without the need to embark on a full modernization initiative.

The zIIP specialty processor is one of those opportunities. By running eligible
“new” code on the zIIP and refactoring some of your legacy code to Java, it’s
possible to experience thousands of dollars in cost savings.

Refactoring COBOL code doesn’t need to be intimidating. It is possible to take
advantage of refactoring and cross-compiling COBOL to create maintainable
Java applications that are data equivalent to their legacy code counterparts -
Java code that can be shifted off the general processor and onto the zIIP.

How? By using CloudFrame Renovate and Relocate products. These tools offer
clean code conversion, automation, and even DevOps integration, leaving you
with object-oriented Java applications that can integrate with your modern
applications and run on the zIIP. The savings realized could be used for head-
count, modernization initiatives, and more. The ROI for CloudFrame is both fast
and substantial.

Want more information about Renovate and Relocate? Download our product
sheets and read case studies from our satisfied customers. Want to learn more
about how CloudFrame can add to your budget and offer a seamless path to
greater specialty processor usage? Schedule a call with us.

https://cloudframe.com/products-2/
https://cloudframe.com/products-2/
https://cloudframe.com/contact-2/

© 2022 CloudFrame Inc. & Mullins Consulting, Inc. All rights reserved.

cloudframe.com

About CloudFrame
CloudFrame frees mainframe applications from COBOL, giving customers automated,
incremental, low-risk, low-cost ways to transform those applications into fully supportable
cloud-native Java. Our products give customers control and the ability to transform mainframe
applications fast, freeing them from COBOL and vendor dependency completely and fully
enabling digital transformation.

CloudFrame, Inc.
100 Overlook Center, 2nd Floor

Princeton, NJ 08540

About the Author
Craig Mullins
Craig Mullins is a mainframe authority specializing in database
administration (DBA), database management, and analytics.
His career spans multiple decades, and he has worked both as a
hands-on mainframe developer and database administrator, and
as a trusted advisor for organizations optimizing their mainframe
infrastructure and developing strategies for their mainframe
systems.

Craig is the author of multiple Db2 books and is a sought-after
presenter and speaker at mainframe-oriented events. He is rec-
ognized as an IBM Gold Consultant, IBM Champion for Data and
AI, and listed by Analytics Week as one of the Top 200 Thought
Leaders in Big Data & Analytics.

He is the President & Principal Consultant of Mullins Consulting,
INC., where he leverages his years of experience and expertise in
database systems development to create and conduct database
classes and deliver systems analysis and design, data analysis,
database administration, performance management, and data
modeling projects.

