
align

© 2017 Mullins Consulting, Inc.

Data Integrity in Operational
Database Management Systems

Craig S. Mullins
Mullins Consulting, Inc.
http://www.MullinsConsulting.com

Data Summit 2017

Database Management Today

© 2017 Mullins Consulting, Inc. 2

Author

This presentation was prepared by:

Craig S. Mullins
President & Principal Consultant

Mullins Consulting, Inc.
15 Coventry Ct
Sugar Land, TX 77479
Tel: 281-494-6153
Fax: 281.491.0637
Skype: cs.mullins
E-mail: craig@craigsmullins.com
http://www.mullinsconsultinginc.com

This document is protected under the copyright laws of the United States and other countries as an unpublished work. This document
contains information that is proprietary and confidential to Mullins Consulting, Inc., which shall not be disclosed outside or
duplicated, used, or disclosed in whole or in part for any purpose other than as approved by Mullins Consulting, Inc. Any use or
disclosure in whole or in part of this information without the express written permission of Mullins Consulting, Inc. is prohibited.

© 2016 Craig S. Mullins and Mullins Consulting, Inc. (Unpublished). All rights reserved.

© 2017 Mullins Consulting, Inc. 3

Agenda

Data Integrity in Operational Database Systems

• What is meant by Data Integrity
• RDBMS vs. NoSQL
• ACID vs. BASE
• Locking
• Isolation Levels
• Types of Eventual Consistency
• Other Data Integrity Issues

• Referential Integrity

© 2017 Mullins Consulting, Inc. 4

What is Data Integrity?

Data integrity in an operational DBMS is making sure that
the data is always accurate and correct
› There are many aspects to data integrity
 Correct in terms of internal DBMS functionality

Structure, pointers, page maps, etc.
 Correct in terms of its business meaning

IQ vs. Shoe size
 Correct in terms of the actual values of data elements

Domain accuracy, data type, length, uniqueness, etc.
 Correct in terms of the relationship between the data elements

Are all references accurate?
 Changes are correctly applied when requested

Transactions processed correctly and appropriately

© 2017 Mullins Consulting, Inc. 5

Data Integrity: an example

Joe goes to the bank to transfer $50 from his savings
account to his checking account
› In Joe’s mind, these things happen concurrently and

immediately
› In practice, a program/transaction will perform these things in

steps
 Withdraw $50 from savings
 Deposit $50 to checking

› But at no time is it correct to say that Joe has $50 less in his
savings account if he does not also, at the same time, have
$50 more in his checking account
 The unit of work has to encompass both actions
 If one fails, both must fail; if one succeeds both must succeed

© 2017 Mullins Consulting, Inc. 6

The Banking Example (continued)

What happens if Joe’s wife attempts to withdraw $20
from the same checking account at the same time that
Joe is transferring funds?
› Let’s say the checking account was down to $1 before Joe’s

transfer transaction began
› A database locking mechanism can prevent concurrent

modifications to the same data
› This is important because:
 What if Joe’s transaction does not complete

successfully?
 If Joe’s wife can withdraw $20 before Joe’s

transaction is committed, then the checking
account will be overdrawn

© 2017 Mullins Consulting, Inc. 7

Questions to be Answered

How do relational and NoSQL differ in terms of
consistency?

Is ACID compliance as big of a deal as it is said to be?

How can data get compromised even with ACID
compliance?

What impact can eventual consistency have on your
data?

What about Referential Integrity?

© 2017 Mullins Consulting, Inc. 8

Relational versus NoSQL – An Overview

Relational (e.g. DB2)
• Rigid, predefined schema
• Sound theoretical

foundation (set theory)
• Industry standard query

language – SQL
• Two-dimensional row and

column design
• More difficult to scale

(usually scale up)
• Usually commercial
• ACID

NoSQL
• Flexible schema
• No theoretical foundation

– many iterations & types
• Query requires

programming or add-on
• Can accommodate

complex data
• Elastic scaling

(scale out)
• Usually open source
• BASE (some provide ACID)

© 2017 Mullins Consulting, Inc. 9

ACID versus BASE

ACID

• Atomicity (all or nothing)

• Consistency
(data is always correct)

• Isolation (concurrent txns)

• Durability
(data survives failures)

BASE

• Basically Available
(no guarantee of data avialability; but
the system will respond to any request)

• Soft State
(changes constantly happening)

• Eventual Consistency

© 2017 Mullins Consulting, Inc. 10

ACID: Atomicity

› Atomicity means that a transaction must exhibit an “all or
nothing” behavior.
 Either all of the instructions within the transaction happen, or none of

them happen.
 Atomicity preserves the “completeness” of the business process.

© 2017 Mullins Consulting, Inc. 11

ACID: Consistency

› Consistency refers to the state of the data both before, and
after, the transaction is executed.
 A transaction maintains the consistency of the state of the data.
 In other words, after running a transaction all data in the database is

“correct.”

© 2017 Mullins Consulting, Inc. 12

ACID: Isolation

› Isolation means that transactions can run at the same time.
Any transactions running in parallel have the illusion that there
is no concurrency.
 In other words, it appears that the system is running only a single

transaction at a time.
 No other concurrent transaction has visibility to the uncommitted

database modifications made by any other transactions.
 To achieve isolation a locking mechanism is required.
 And there are various levels of isolation that can impact data integrity if

you do not understand how they work and what they mean.
Isolation level discussion forthcoming later in presentation…

© 2017 Mullins Consulting, Inc. 13

ACID: Durability

› Durability refers to the impact of an outage or failure on a
running transaction.
 A durable transaction will not impact the state of data if the transaction

ends abnormally.
 The data will survive any failures.

© 2017 Mullins Consulting, Inc. 14

BASE: Basically Available

› Basically Available means that there is no guarantee of any
specific piece of data being available.
 But the system will respond to any request
 In other words, there can be a partial failure of a distributed system but

the rest of the system will continue to operate
 Consider a system with 10 servers. If one fails, the other nine continue

to operate.
 This means that data on the failing server will not be available…

Unless the data is replicated redundantly across multiple servers, which
can provide failover relief

© 2017 Mullins Consulting, Inc. 15

BASE: Soft State

› In a Soft State system changes are constantly happening. Of
course, this is really no different than any active system. But
 It means that the data you retrieve at a given point in time may

eventually get over-written more recent data
 Amazon seller example

© 2017 Mullins Consulting, Inc. 16

BASE: Eventual Consistency

› Eventual Consistency means that there will be times when
the database is in an inconsistent state.
 When multiple copies of the data reside on separate servers (which is

common in NoSQL databases), an update may not be immediately made
to all copies simultaneously

 So the data is inconsistent for a time,1 but
the database replication mechanism will
eventually update all of the copies of the
data to be consistent

1 This is sometimes referred to as being “wrong” by relational DBAs.

© 2017 Mullins Consulting, Inc. 17

ACID versus BASE

The bottom line is that both consistency methods can
work depending upon the type of applications that you
are writing.
› ACID lends itself to traditional transaction processing where

the data must always be accurate at all times
 For example, banking

› BASE lends itself to situations where brief periods of
inconsistency are tolerable
 For example, web-based applications

› But you need to know what you are
working with!
 ACID does not “guarantee” data integrity!

© 2017 Mullins Consulting, Inc. 18

Locking is used with ACID to Implement Isolation

Locking
› Types of Locks
 Share, eXclusive
 Intent Locks
 Row, Page, Table, Table Space

› Timeouts
› Deadlocks
 Example on next page

© 2017 Mullins Consulting, Inc. 19

Table X

data…data…data...

Process A Process B

.

.

.
Request row 3

.

.

.

.
Request row 7

lock
.
.
.

Request row 7
.
.
.

Request row 3

data…data…data...
lock

Process A is waiting on Process B Process B is waiting on Process A

Deadlocks

© 2017 Mullins Consulting, Inc. 20

Lock Duration

Isolation Level
› This is the “I” in ACID
 Read uncommitted
 Read committed
 Repeatable read
 Serializable

› Specified for programs to dictate how
the DBMS should isolate changes
 The isolation or serialization parameter

will have a big impact on the behavior
of the program

 Unfortunately, many folks are unaware
of the impact…

© 2017 Mullins Consulting, Inc. 21

Isolation: Read Uncommitted

Read Uncommitted isolation implements read-through
locks and is sometimes referred to as a dirty read.
› It applies to read operations only. Eliminates read locking.
› Data may be read that never actually exists in the database,

because the transaction can read data that has been changed
by another process but is not yet committed.
 A dirty read can cause duplicate rows to be returned where none exist or

no rows may be returned when one (or more) actually exists.
› Read uncommitted isolation provides the highest level of

availability and concurrency, but the worst data integrity.
› It should be used only when data integrity problems can be

tolerated.
 For example, analytical queries, estimates, and averages are likely

candidates for read uncommitted locking.

© 2017 Mullins Consulting, Inc. 22

Isolation: Read Committed

The Read Committed isolation level provides increased
integrity control than read uncommitted.
› With read committed isolation, a transaction will never read

data that is not yet committed
 That is, only committed data can be read.
 This lowers availability as reads on data that is being updated will be

delayed (lock waits) until the modification is committed
› Sometimes referred to as Cursor Stability

© 2017 Mullins Consulting, Inc. 23

Isolation: Repeatable Read

Repeatable Read place a further restriction on reads; the
assurance that the same data can be accessed multiple
times during the transaction without its value changing.
› The lower isolation levels permit the underlying data to change

if it is accessed more than once.
› Write skew is still possible;
 Two writes are allowed to the same column(s) in a row by two different

writers (who have previously read the columns they are updating),
resulting in the row having data that is a mix of the two transactions

› Use repeatable read when:
 Your program reads the same data multiple different times during the

course of the transaction and the data values must be consistent.
Otherwise, processes can change data after it is read by your program;
subsequent reads of “the same” data actually will not be the same.
Phantoms can still exist, though… see Serializable (next slide)

© 2017 Mullins Consulting, Inc. 24

Isolation: Serializable

The highest level of integrity is provided by the
Serializable isolation level.
› Serializable isolation removes write skew and the possibility of

phantoms.
› A phantom occurs when the transaction opens a cursor that

retrieves data and subsequently another process inserts a
value that would satisfy the request and should be in the
result set.
 Serializable isolation will ensure that reads issued more than once in a

program will return the exact same data
No data inserted, updated or deleted by other programs allowed to data
accessed by the program, while the program runs

© 2017 Mullins Consulting, Inc. 25

Isolation Levels and Integrity

Isolation
level Dirty reads

Non-
repeatable

reads
Phantoms

Read
Uncommitted may occur may occur may occur

Read
Committed - may occur may occur

Repeatable
Read - - may occur

Serializable - - -

© 2017 Mullins Consulting, Inc. 26

Isolation Levels and Locking

Isolation
level Write Read Range

Read
Uncommitted S S S

Read
Committed C S S

Repeatable
Read C C S

Serializable C C C

"C" - Locks are held until the transaction commits.
"S" - Locks are held only during the currently executing statement.

© 2017 Mullins Consulting, Inc. 27

Questions?

Unless all of your programs that modify data are using
the serializable isolation level data integrity issues can
arise…

• Do you know what isolation level is used for all of your
mission critical applications?

Isolation level can be controlled at the program or
statement level…

• Do you know what actions your programmers are taking
with regard to isolation?

© 2017 Mullins Consulting, Inc. 28

Eventual Consistency

So we see that ACID is not just a “we support it” issue
and all data is magically correct!

There are also different types of Eventual Consistency
that can be supported
› Casual consistency
› Read-your-writes consistency
› Session consistency
› Monotonic read consistency
› Monotonic write consistency

© 2017 Mullins Consulting, Inc. 29

Casual Consistency

Casual consistency maintains the order of updates.
› The database will reflect the order of modification operations

performed on the data.
› Consider our banking example
 Joe withdraws $50 from savings
 Joe deposits $50 to checking
 Joe’s wife withdraws $20 from checking

© 2017 Mullins Consulting, Inc. 30

Read-Your-Writes Consistency

Read-Your-Writes consistency means that when you
modify data, all of your reads will return the modified
value.
› Consider our banking example
 Joe withdraws $50 from savings
 Joe’s wife queries the balance of checking

The balance will not reflect the $50 as it has not been deposited yet
 Joe’s wife queries the balance of savings

The balance will reflect the $50 that has been withdrawn

© 2017 Mullins Consulting, Inc. 31

Session Consistency

Session consistency ensures Read-Your-Writes
consistency at the session level.
› Consider our banking example
 Joe withdraws $50 from savings
 Joe deposits $50 to checking
 Joe queries the balance of checking

The balance will reflect the $50 as it has been deposited
 Joe queries the balance of savings

The balance will reflect the $50 that has been withdrawn
 Joe ends his session
 Joe queries his balance (of either account)

The balance may or may not reflect the deposit/withdrawal as another session
has been initiated

© 2017 Mullins Consulting, Inc. 32

Monotonic Read Consistency

Monotonic Read consistency ensures that if you issue a
query and receive a result, you will never receive earlier
values in subsequent queries.
› Consider our banking example
 Joe withdraws $50 from savings
 Joe deposits $50 to checking
 Joe queries the balance of checking

The balance will reflect the $50 as it has been deposited
 Joe queries the balance of checking again

The balance will reflect the $50 that has been deposited even if all servers with
a copy of that data have not yet been updated

© 2017 Mullins Consulting, Inc. 33

Monotonic Write Consistency

Monotonic Write consistency ensures the order of
database modifications is maintained.
› Consider our banking example
 Joe withdraws $50 from savings
 Joe deposits $50 to checking
 Joe’s wife withdraws $20 from checking
 Joe queries the balance of checking

The balance will reflect the $50 as it has been deposited
And it will also reflect the $20 that has been withdrawn by his wife

 If the order of operations were not guaranteed then:
Joe’s wife could withdraw the $20 before Joe’s $50 deposit is recorded in the
database
That means overdraft fees could be applied and when Joe queries the balance it
will be lower

 Monotonic Write consistency is important for consistent data!

© 2017 Mullins Consulting, Inc. 34

Other Types of Data Integrity

Structural integrity
 Consistency Options
 Database Checking
 Memory Usage
 Additional Options

Semantic data integrity
 Entity Integrity
 Referential Integrity

User- vs. System-Managed RI
 Unique Constraints
 Data Types
 Default Values
 Check Constraints
 Triggers

© 2017 Mullins Consulting, Inc. 35

Referential Integrity

Primary Key
Foreign Key
DELETE RULE

 Restrict
 Cascade
 Set NULL

Managing Referential Sets
 Backup & Recovery
 LOAD
 CHECK

DEPT

EMP

employs

employed-by

© 2017 Mullins Consulting, Inc. 36

Summary

Data integrity and consistency is not a simple all or
nothing proposition
You cannot simply say “My DBMS supports ACID so my
data is correct”
› You must understand what is supported and how
› You must educate developers to use the proper parameters
 A DBMS with ACID where all programs use Uncommitted Read is not

likely to result in data integrity
 A DBMS with eventual consistency programmed appropriately can result

in having reasonable data integrity
 Know your application/business needs and proceed accordingly

We have looked at the basic issues but there are many
additional nuances to data integrity that you will
encounter

© 2017 Mullins Consulting, Inc. 37

Contact Information

Craig S. Mullins
Mullins Consulting, Inc.
15 Coventry Court
Sugar Land, TX 77479
Phone: (281) 494-6153

craig@craigsmullins.com

http://www.mullinsconsulting.com

